高光谱成像
像素
人工智能
模式识别(心理学)
计算机科学
卷积神经网络
立方体(代数)
土地覆盖
数据立方体
分割
一般化
空间分析
遥感
计算机视觉
数学
地理
土地利用
数据挖掘
土木工程
数学分析
工程类
组合数学
作者
Hao Sun,Xiangtao Zheng,Xiaoqiang Lu
标识
DOI:10.1109/tip.2021.3055613
摘要
Recently, deep learning has drawn broad attention in the hyperspectral image (HSI) classification task. Many works have focused on elaborately designing various spectral-spatial networks, where convolutional neural network (CNN) is one of the most popular structures. To explore the spatial information for HSI classification, pixels with its adjacent pixels are usually directly cropped from hyperspectral data to form HSI cubes in CNN-based methods. However, the spatial land-cover distributions of cropped HSI cubes are usually complicated. The land-cover label of a cropped HSI cube cannot simply be determined by its center pixel. In addition, the spatial land-cover distribution of a cropped HSI cube is fixed and has less diversity. For CNN-based methods, training with cropped HSI cubes will result in poor generalization to the changes of spatial land-cover distributions. In this paper, an end-to-end fully convolutional segmentation network (FCSN) is proposed to simultaneously identify land-cover labels of all pixels in a HSI cube. First, several experiments are conducted to demonstrate that recent CNN-based methods show the weak generalization capabilities. Second, a fine label style is proposed to label all pixels of HSI cubes to provide detailed spatial land-cover distributions of HSI cubes. Third, a HSI cube generation method is proposed to generate plentiful HSI cubes with fine labels to improve the diversity of spatial land-cover distributions. Finally, a FCSN is proposed to explore spectral-spatial features from finely labeled HSI cubes for HSI classification. Experimental results show that FCSN has the superior generalization capability to the changes of spatial land-cover distributions.
科研通智能强力驱动
Strongly Powered by AbleSci AI