Machine Learning-Based Design Concept Evaluation

计算机科学 创造力 集合(抽象数据类型) 多样性(控制论) 人工智能 过程(计算) 机器学习 选择(遗传算法) 工程设计过程 数据科学 工程类 政治学 机械工程 操作系统 程序设计语言 法学
作者
Bradley Camburn,Yuejun He,Sujithra Raviselvam,Jianxi Luo,Kristin L. Wood
出处
期刊:Journal of Mechanical Design 卷期号:142 (3) 被引量:59
标识
DOI:10.1115/1.4045126
摘要

Abstract In order to develop novel solutions for complex systems and in increasingly competitive markets, it may be advantageous to generate large numbers of design concepts and then to identify the most novel and valuable ideas. However, it can be difficult to process, review, and assess thousands of design concepts. Based on this need, we develop and demonstrate an automated method for design concept assessment. In the method, machine learning technologies are first applied to extract ontological data from design concepts. Then, a filtering strategy and quantitative metrics are introduced that enable creativity rating based on the ontological data. This method is tested empirically. Design concepts are crowd-generated for a variety of actual industry design problems/opportunities. Over 4000 design concepts were generated by humans for assessment. Empirical evaluation assesses: (1) correspondence of the automated ratings with human creativity ratings; (2) whether concepts selected using the method are highly scored by another set of crowd raters; and finally (3) if high scoring designs have a positive correlation or relationship to industrial technology development. The method provides a possible avenue to rate design concepts deterministically. A highlight is that a subset of designs selected automatically out of a large set of candidates was scored higher than a subset selected by humans when evaluated by a set of third-party raters. The results hint at bias in human design concept selection and encourage further study in this topic.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哚圆圆发布了新的文献求助10
2秒前
一城烟雨发布了新的文献求助10
4秒前
liuliu发布了新的文献求助10
4秒前
安详的曲奇完成签到,获得积分10
5秒前
852发布了新的文献求助10
6秒前
丘比特应助Rrr采纳,获得10
6秒前
ding应助妮儿采纳,获得10
8秒前
zq发布了新的文献求助30
8秒前
gao123发布了新的文献求助10
9秒前
JamesPei应助yjkiih采纳,获得10
9秒前
小蘑菇应助哈哈哈采纳,获得10
11秒前
阿北完成签到,获得积分10
11秒前
11秒前
Ava应助liuuuuuuuuuuuuu采纳,获得10
14秒前
东方一斩发布了新的文献求助30
14秒前
14秒前
15秒前
希望天下0贩的0应助MMMMM采纳,获得10
15秒前
乐观完成签到 ,获得积分10
16秒前
安安发布了新的文献求助10
17秒前
CipherSage应助FR采纳,获得10
17秒前
大模型应助waoller1采纳,获得10
17秒前
跳跃靖发布了新的文献求助30
18秒前
柏林发布了新的文献求助20
19秒前
19秒前
zhy发布了新的文献求助10
20秒前
充电宝应助哚圆圆采纳,获得10
20秒前
20秒前
萧水白应助科研通管家采纳,获得10
21秒前
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
22秒前
wanci应助牛人采纳,获得10
22秒前
斯尼奇发布了新的文献求助10
24秒前
24秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396690
求助须知:如何正确求助?哪些是违规求助? 3006279
关于积分的说明 8820307
捐赠科研通 2693354
什么是DOI,文献DOI怎么找? 1475314
科研通“疑难数据库(出版商)”最低求助积分说明 682394
邀请新用户注册赠送积分活动 675668