Behavioral shaping of rhesus macaques using the Cambridge neuropsychological automated testing battery.

心理学 考试(生物学) 神经心理评估 听力学 神经心理学测验 神经认知
作者
Robert G. Wither,Susan E. Boehnke,Ann Lablans,Brittney Armitage-Brown,Douglas P. Munoz
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:342: 108803- 被引量:1
标识
DOI:10.1016/j.jneumeth.2020.108803
摘要

Abstract Background The Cambridge neuropsychological test automated battery (CANTAB) is a set of computerized visuospatial tests used to probe cognition in humans. The non-human primate (NHP) version of the battery is a valuable translational research tool to quantify cognitive changes in NHP models of disease by allowing direct comparison with performance data from human patient populations. One limitation is the long training times required for NHPs to reach appropriate levels of task performance, which is prohibitive for high throughput experimental designs. New method We report a new training regimen to teach NHPs a subset of CANTAB cognitive tasks using a method of successive approximations (shaping), where rewarded behaviors progressively approximate the goal behavior, and sequential task learning is used to build upon previously learned rules. Using this refined method, we taught 9 adult rhesus macaques to perform three tasks: the self-ordered spatial search (SOSS), delayed match-to-sample (DMTS), and paired associative learning (PAL) tasks. Results and comparison with existing methods NHPs learned all three cognitive tasks in approximately 130 training sessions, roughly 200 sessions faster than previously published training times. NHPs were able to perform each task to a stable level of performance (>80 % correct) enabling their use in future cognitive experiments. Conclusions Our approach of behavioral shaping reduced the time to train NHPs to performance criteria on SOSS, DMTS, and PAL tasks. This allows efficient use of the NHP-adapted CANTAB to compare cognitive changes in NHP models of neurological disease with those observed in human patient populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医学生Mavis完成签到,获得积分10
1秒前
nextconnie完成签到,获得积分10
1秒前
汉堡包应助yyj采纳,获得10
2秒前
zqh740发布了新的文献求助30
3秒前
4秒前
NexusExplorer应助pharmstudent采纳,获得10
5秒前
熊遇蜜完成签到,获得积分10
7秒前
panzer完成签到,获得积分10
8秒前
9秒前
lyt发布了新的文献求助10
10秒前
六月毕业关注了科研通微信公众号
11秒前
petrichor应助程程采纳,获得10
12秒前
圆儿完成签到 ,获得积分10
12秒前
潇洒的灵萱完成签到,获得积分10
12秒前
12秒前
12秒前
Toooo完成签到,获得积分10
13秒前
zqh740完成签到,获得积分10
13秒前
科研通AI5应助thchiang采纳,获得10
13秒前
lizzzzzz完成签到,获得积分10
14秒前
yyj发布了新的文献求助10
14秒前
请和我吃饭完成签到,获得积分10
15秒前
北城发布了新的文献求助10
16秒前
勤恳冰淇淋完成签到 ,获得积分10
17秒前
19秒前
19秒前
清晏完成签到,获得积分10
20秒前
曲书文完成签到,获得积分10
21秒前
李瑞瑞发布了新的文献求助10
21秒前
5123完成签到,获得积分10
21秒前
勤劳落雁发布了新的文献求助10
21秒前
21秒前
24秒前
xuxu完成签到 ,获得积分10
24秒前
25秒前
毛毛虫发布了新的文献求助10
25秒前
科研通AI5应助朴斓采纳,获得10
26秒前
陈彦冰完成签到,获得积分10
26秒前
tianny完成签到,获得积分10
27秒前
浪迹天涯发布了新的文献求助10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824