Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review

多硫化物 锂硫电池 法拉第效率 氧化还原 钝化 电化学 溶解 催化作用 阳极 材料科学 过渡金属 化学工程 纳米技术 化学 无机化学 冶金 电解质 电极 物理化学 生物化学 图层(电子) 工程类
作者
Jingfa Li,Zhihao Niu,Cong Guo,Min Li,Weizhai Bao
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:54: 434-451 被引量:169
标识
DOI:10.1016/j.jechem.2020.06.009
摘要

Lithium-sulfur batteries (LSBs) are being recognized as potential successor to ubiquitous LIBs in daily life due to their higher theoretical energy density and lower cost effectiveness. However, the development of the LSB is beset with some tenacious issues, mainly including the insulation nature of the S or Li2S (the discharged product), the unavoidable dissolution of the reaction intermediate products (mainly as lithium polysulfides (LiPSs)), and the subsequent LiPSs shuttling across the separator, resulting in the continuous loss of active material, anode passivation, and low coulombic efficiency. Containment methods by introducing the high-electrical conductivity host are commonly used in improving the electrochemical performances of LSBs. However, such prevalent technologies are in the price of reduced energy density since they require more addition of amount of host materials. Adding trace of catalysts that catalyze the redox reaction between S/Li2S and Li2Sn (3 < n ≤ 8), shows ingenious design, which not only accelerates the conversion reaction between the solid S species and dissolved S species, alleviating the shuttle effect, but also expedites the electron transport thus reducing the polarization of the electrode. In this review, the redox reaction process during Li–S chemistry are firstly highlighted. Recent developed catalysts, including transition metal oxides, chalcogenides, phosphides, nitrides, and carbides/borides are then outlined to better understand the role of catalyst additives during the polysulfide conversion. Finally, the critical issues, challenges, and perspectives are discussed to demonstrate the potential development of LSBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发嗲的高跟鞋完成签到,获得积分10
刚刚
大轩发布了新的文献求助10
1秒前
1秒前
自信鞯发布了新的文献求助10
1秒前
pacify完成签到,获得积分10
2秒前
LYL完成签到,获得积分10
2秒前
可爱的函函应助等你下课采纳,获得10
3秒前
3秒前
大轩发布了新的文献求助10
4秒前
大轩发布了新的文献求助10
4秒前
大轩发布了新的文献求助30
4秒前
大轩发布了新的文献求助10
4秒前
遗迹小白完成签到,获得积分10
4秒前
5秒前
烟花应助隐形的雪碧采纳,获得10
6秒前
naonao发布了新的文献求助10
6秒前
6秒前
天天快乐应助濮阳思远采纳,获得10
7秒前
8秒前
脑洞疼应助liway采纳,获得10
11秒前
熊阿阿完成签到 ,获得积分10
11秒前
完美世界应助缓慢的绝施采纳,获得10
12秒前
flypipidan发布了新的文献求助10
12秒前
骞骞完成签到 ,获得积分10
15秒前
15秒前
16秒前
我是老大应助Audery采纳,获得10
16秒前
18秒前
Garry应助haowu采纳,获得10
19秒前
zheyu完成签到,获得积分10
20秒前
Azure发布了新的文献求助10
21秒前
DamenS完成签到,获得积分10
22秒前
xgx984完成签到,获得积分10
23秒前
redblue发布了新的文献求助10
24秒前
24秒前
Crazyalien完成签到,获得积分10
24秒前
穆紫应助obaica采纳,获得10
24秒前
慕青应助直率的友桃采纳,获得10
26秒前
我是老大应助flypipidan采纳,获得10
27秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124525
求助须知:如何正确求助?哪些是违规求助? 2774840
关于积分的说明 7724243
捐赠科研通 2430307
什么是DOI,文献DOI怎么找? 1291019
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297