Synergy of Ion Doping and Spiral Array Architecture on Ti2Nb10O29: A New Way to Achieve High‐Power Electrodes

材料科学 阳极 功率密度 电极 兴奋剂 石墨烯 纳米技术 光电子学 功率(物理) 化学 物理 量子力学 物理化学
作者
Shengjue Deng,He Zhu,Bo Liu,Liang Yang,Xiuli Wang,Shenghui Shen,Yan Zhang,Jiaao Wang,Changzhi Ai,Yang Ren,Qi Liu,Shiwei Lin,Yangfan Lu,Guoxiang Pan,Jianbo Wu,Xinhui Xia,J.P. Tu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:30 (25) 被引量:49
标识
DOI:10.1002/adfm.202002665
摘要

Abstract Ameliorating electronic/ionic transport and structural stability of electrode materials is important to the development of power‐intensive lithium ion batteries. Despite its great potential as a high‐power anode, titanium niobium oxide (Ti 2 Nb 10 O 29 , TNO) still underperforms due to its unsatisfactory electronic/ionic conductivity. In this work, a powerful synergistic strategy by combining ion doping and spiral array architecture to boost high‐rate performance of TNO is reported. Cr 3+ doped TNO nanoparticles (Cr‐TNO) of 5–10 nm intimately grow on a conductive vertical graphene@TiC‐C (VGTC) skeleton, forming novel Cr‐TNO@VGTC spiral arrays. The unique spiral growth of TNO is achieved due to the confinement effect of VGTC skeleton. Meanwhile, a more open TNO crystal structure with faster ion transfer paths and enhanced structural stability is realized by Cr 3+ doping, demonstrated via density functional theory calculation and in situ synchrotron X‐ray diffraction technique. Benefiting from the superior conductive network, enhanced intrinsic electronic/ionic conductivity of Cr‐TNO and reinforced structural stability, the Cr‐TNO@VTC arrays show prominent high‐power performance with a large capacity of 220 mAh g −1 at 40 C (power density of ≈11 kW kg −1 ) and superior durability (91% retention after 500 cycles). This work provides a new path for the construction of widespread high‐power electrodes for fast energy storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
cytheria发布了新的文献求助10
2秒前
时间的过客完成签到,获得积分10
2秒前
HesperLxy发布了新的文献求助10
2秒前
SciGPT应助天天玩采纳,获得10
4秒前
4秒前
NexusExplorer应助cc采纳,获得10
4秒前
李爱国应助千尺焰采纳,获得10
5秒前
666发布了新的文献求助10
6秒前
美好斓发布了新的文献求助10
6秒前
6秒前
zzz发布了新的文献求助30
8秒前
文献小白发布了新的文献求助10
8秒前
xxx发布了新的文献求助30
8秒前
666完成签到,获得积分10
8秒前
Jasper应助cc采纳,获得10
9秒前
思源应助hahaha采纳,获得10
10秒前
嘻嘻发布了新的文献求助20
10秒前
10秒前
10秒前
Aurora发布了新的文献求助10
11秒前
angel完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
NexusExplorer应助ercha采纳,获得10
13秒前
cytheria完成签到,获得积分10
13秒前
14秒前
14秒前
小杭76应助九漏鱼采纳,获得10
14秒前
15秒前
JXDYYZK发布了新的文献求助10
15秒前
15秒前
16秒前
天天玩发布了新的文献求助10
16秒前
16秒前
16秒前
思源应助玄博元采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Handbook of Industrial Inkjet Printing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961