Rapid identification of alpha-fetoprotein in serum by a microfluidic SERS chip integrated with Ag/Au Nanocomposites

肝细胞癌 微流控芯片 拉曼光谱 炸薯条 材料科学 甲胎蛋白 微流控 色谱法 分析化学(期刊) 纳米技术 化学 医学 内科学 计算机科学 物理 光学 电信
作者
Xinyu He,Chuang Ge,Xiangquan Zheng,Bin Tang,Li Chen,Shunbo Li,Li Wang,Liqun Zhang,Yi Xu
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:317: 128196-128196 被引量:41
标识
DOI:10.1016/j.snb.2020.128196
摘要

• A six-channel microfluidic chip integrated with automatic injection and the Ag/Au nanocomposites SERS enhanced substrate was designed. • SERS analytical methodology and statistical methods were combined to establish an efficient and rapid alpha-fetoprotein detection method in serum. • For hepatocellular carcinoma patients’ serum samples and normal serum samples, the classification accuracy by the proposed PCA-LDA model was 96.25% and the blind sample test accuracy was 95%. The rapid detection of alpha-fetoprotein (AFP) in serum is of great significance in the early diagnosis of hepatocellular carcinoma (HCC). A novel six-channel microfluidic SERS chip integrated with Ag/Au nanocomposites (NCs) for rapid SERS identification of AFP in serum was proposed in this work. Automatic injection was realized by negative pressure formed by specially designed PDMS module on the SERS chip. The serum samples originating from 60 HCC patients and 60 healthy people were measured by SERS on the designed microchip under the optimized conditions. The SERS spectra of serum samples from normal people and patients were collected and analyzed by Principal Component Analysis (PCA) which separated the characteristic Raman peaks of AFP of the two groups into two distinct clusters. Linear Discriminate Analysis (LDA) based on the PCA generated features differentiated the patients’ sera SERS spectra from the normal sera SERS spectra with a classification accuracy of 96.25% and a blind sample test accuracy of 95%. It is shown that the proposed microfludic SERS chip for AFP SERS test in serum can rapidly and efficiently identify HCC patients. It is of great research value and practical prospect in the fields of disease diagnosis and screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗艳一完成签到,获得积分10
1秒前
Wonder完成签到,获得积分10
2秒前
yang完成签到,获得积分10
4秒前
123123完成签到 ,获得积分10
5秒前
温暖宛筠完成签到,获得积分10
5秒前
小欣6116完成签到,获得积分10
6秒前
请叫我风吹麦浪应助冬月采纳,获得10
6秒前
LIUYONG发布了新的文献求助10
7秒前
7秒前
肖雪依完成签到,获得积分10
7秒前
影子完成签到,获得积分10
8秒前
9秒前
晨珂完成签到,获得积分10
9秒前
Florencia发布了新的文献求助10
11秒前
xiezhuochun发布了新的文献求助10
12秒前
12秒前
同瓜不同命完成签到,获得积分10
14秒前
牛马哥发布了新的文献求助10
15秒前
温婉的松鼠完成签到,获得积分10
15秒前
16秒前
辛勤的寄瑶完成签到,获得积分10
16秒前
Lauren完成签到 ,获得积分10
17秒前
18秒前
忆枫完成签到,获得积分10
22秒前
炒鸡小将发布了新的文献求助10
22秒前
花壳在逃野猪完成签到 ,获得积分10
22秒前
22秒前
银子吃好的完成签到,获得积分10
23秒前
西瓜霜完成签到 ,获得积分10
23秒前
科研废物完成签到 ,获得积分10
25秒前
冬月完成签到,获得积分10
25秒前
25秒前
马东完成签到,获得积分10
27秒前
搜集达人应助动听的秋白采纳,获得10
27秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
华仔应助炒鸡小将采纳,获得10
29秒前
chizhi完成签到,获得积分10
29秒前
雪雨夜心应助白智妍采纳,获得10
30秒前
祁乐安发布了新的文献求助20
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029