A deep learning-based system for identifying differentiation status and delineating the margins of early gastric cancer in magnifying narrow-band imaging endoscopy

医学 窄带成像 置信区间 内科学 内窥镜检查 胃肠病学 放射科 癌症
作者
Tao Ling,Lianlian Wu,Yiwei Fu,Qinwei Xu,Ping An,Jun Zhang,Shan Hu,Yiyun Chen,Xinqi He,Jing Wang,Xi Chen,Jie Zhou,Y Xu,Xiaoping Zou,Honggang Yu
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:53 (05): 469-477 被引量:63
标识
DOI:10.1055/a-1229-0920
摘要

Abstract Background Accurate identification of the differentiation status and margins for early gastric cancer (EGC) is critical for determining the surgical strategy and achieving curative resection in EGC patients. The aim of this study was to develop a real-time system to accurately identify differentiation status and delineate the margins of EGC on magnifying narrow-band imaging (ME-NBI) endoscopy. Methods 2217 images from 145 EGC patients and 1870 images from 139 EGC patients were retrospectively collected to train and test the first convolutional neural network (CNN1) to identify EGC differentiation status. The performance of CNN1 was then compared with that of experts using 882 images from 58 EGC patients. Finally, 928 images from 132 EGC patients and 742 images from 87 EGC patients were used to train and test CNN2 to delineate the EGC margins. Results The system correctly predicted the differentiation status of EGCs with an accuracy of 83.3 % (95 % confidence interval [CI] 81.5 % – 84.9 %) in the testing dataset. In the man – machine contest, CNN1 performed significantly better than the five experts (86.2 %, 95 %CI 75.1 % – 92.8 % vs. 69.7 %, 95 %CI 64.1 % – 74.7 %). For delineating EGC margins, the system achieved an accuracy of 82.7 % (95 %CI 78.6 % – 86.1 %) in differentiated EGC and 88.1 % (95 %CI 84.2 % – 91.1 %) in undifferentiated EGC under an overlap ratio of 0.80. In unprocessed EGC videos, the system achieved real-time diagnosis of EGC differentiation status and EGC margin delineation in ME-NBI endoscopy. Conclusion We developed a deep learning-based system to accurately identify differentiation status and delineate the margins of EGC in ME-NBI endoscopy. This system achieved superior performance when compared with experts and was successfully tested in real EGC videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听的母鸡完成签到,获得积分10
刚刚
老王完成签到,获得积分10
刚刚
1秒前
五花肉完成签到,获得积分10
1秒前
orixero应助小五的室友采纳,获得10
1秒前
l玖应助种花家的兔子采纳,获得10
2秒前
我是老大应助查理采纳,获得10
2秒前
2秒前
脑洞疼应助Felly采纳,获得10
3秒前
WHY发布了新的文献求助10
3秒前
4秒前
4秒前
漂亮忆南发布了新的文献求助10
5秒前
炸鸡腿完成签到,获得积分10
5秒前
5秒前
lyx完成签到,获得积分10
6秒前
可爱的函函应助蓝桥兰灯采纳,获得10
7秒前
虚幻的鱼发布了新的文献求助10
7秒前
结实松鼠发布了新的文献求助10
8秒前
HH发布了新的文献求助10
8秒前
哒哒哒发布了新的文献求助10
9秒前
10秒前
10秒前
wanci应助WHY采纳,获得10
10秒前
Wonderland完成签到,获得积分10
10秒前
Shine完成签到 ,获得积分10
10秒前
shrimp5215发布了新的文献求助10
11秒前
思源应助背后广山采纳,获得10
11秒前
查理发布了新的文献求助10
14秒前
14秒前
小鱼仔完成签到,获得积分10
14秒前
着急的听南完成签到,获得积分10
14秒前
14秒前
领导范儿应助wxyllxx采纳,获得10
15秒前
科研通AI2S应助云_123采纳,获得10
16秒前
浪浪浪完成签到 ,获得积分10
16秒前
Akim应助惜风采纳,获得30
18秒前
19秒前
研友_VZG7GZ应助无心的青槐采纳,获得10
19秒前
火星上仰完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847