A deep learning-based system for identifying differentiation status and delineating the margins of early gastric cancer in magnifying narrow-band imaging endoscopy

医学 窄带成像 置信区间 内科学 内窥镜检查 胃肠病学 放射科 癌症
作者
Tingsheng Ling,Lianlian Wu,Yiwei Fu,Qinwei Xu,Ping An,Jun Zhang,Shan Hu,Yiyun Chen,Xinqi He,Jing Wang,Xi Chen,Jie Zhou,Y. Xu,Xiaoping Zou,Honggang Yu
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:53 (05): 469-477 被引量:86
标识
DOI:10.1055/a-1229-0920
摘要

Abstract Background Accurate identification of the differentiation status and margins for early gastric cancer (EGC) is critical for determining the surgical strategy and achieving curative resection in EGC patients. The aim of this study was to develop a real-time system to accurately identify differentiation status and delineate the margins of EGC on magnifying narrow-band imaging (ME-NBI) endoscopy. Methods 2217 images from 145 EGC patients and 1870 images from 139 EGC patients were retrospectively collected to train and test the first convolutional neural network (CNN1) to identify EGC differentiation status. The performance of CNN1 was then compared with that of experts using 882 images from 58 EGC patients. Finally, 928 images from 132 EGC patients and 742 images from 87 EGC patients were used to train and test CNN2 to delineate the EGC margins. Results The system correctly predicted the differentiation status of EGCs with an accuracy of 83.3 % (95 % confidence interval [CI] 81.5 % – 84.9 %) in the testing dataset. In the man – machine contest, CNN1 performed significantly better than the five experts (86.2 %, 95 %CI 75.1 % – 92.8 % vs. 69.7 %, 95 %CI 64.1 % – 74.7 %). For delineating EGC margins, the system achieved an accuracy of 82.7 % (95 %CI 78.6 % – 86.1 %) in differentiated EGC and 88.1 % (95 %CI 84.2 % – 91.1 %) in undifferentiated EGC under an overlap ratio of 0.80. In unprocessed EGC videos, the system achieved real-time diagnosis of EGC differentiation status and EGC margin delineation in ME-NBI endoscopy. Conclusion We developed a deep learning-based system to accurately identify differentiation status and delineate the margins of EGC in ME-NBI endoscopy. This system achieved superior performance when compared with experts and was successfully tested in real EGC videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助drama_queen采纳,获得10
刚刚
刚刚
星星发布了新的文献求助30
刚刚
李爱国应助周小鱼采纳,获得10
1秒前
1秒前
阿海的完成签到,获得积分10
1秒前
炙热果汁发布了新的文献求助10
2秒前
Akim应助失眠的契采纳,获得10
2秒前
3秒前
LaTeXer应助Jackhai采纳,获得30
3秒前
啊啊啊啊完成签到,获得积分10
3秒前
3秒前
毛毛616完成签到,获得积分10
3秒前
小汤完成签到 ,获得积分10
3秒前
明明明明明明明明z完成签到,获得积分10
4秒前
pigff发布了新的文献求助10
4秒前
从容的水风完成签到,获得积分20
4秒前
ShengQ发布了新的文献求助30
5秒前
自由妙竹发布了新的文献求助10
6秒前
rrrrrrry发布了新的文献求助10
7秒前
8秒前
Gary完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
李健应助炙热果汁采纳,获得10
9秒前
9秒前
9秒前
木木完成签到 ,获得积分10
10秒前
顾矜应助ww417采纳,获得10
11秒前
Kidom发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
SciGPT应助Youlu采纳,获得10
11秒前
11秒前
搜集达人应助优美紫槐采纳,获得10
11秒前
paul完成签到,获得积分10
12秒前
Allez应助高兴海燕采纳,获得10
12秒前
CodeCraft应助冷傲的不愁采纳,获得10
12秒前
12秒前
zz发布了新的文献求助10
15秒前
dcx完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720613
求助须知:如何正确求助?哪些是违规求助? 5261184
关于积分的说明 15291693
捐赠科研通 4869973
什么是DOI,文献DOI怎么找? 2615162
邀请新用户注册赠送积分活动 1565108
关于科研通互助平台的介绍 1522214