Hyperspectral Anomaly Detection Using Dual Window Density

高光谱成像 多光谱图像 像素 异常检测 计算机科学 人工智能 遥感 异常(物理) 高斯分布 计算机视觉 模式识别(心理学) 地质学 物理 凝聚态物理 量子力学
作者
Bing Tu,Xianchang Yang,Chengle Zhou,Danbing He,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (12): 8503-8517 被引量:41
标识
DOI:10.1109/tgrs.2020.2988385
摘要

Hyperspectral anomaly detection is one of the most active topics in hyperspectral image (HSI) analysis. The fine spectral information of HSIs allows us to uncover anomalies with very high accuracy. Recently, an intrinsic image decomposition (IID) model has been introduced for low-rank IID (LRIID) in multispectral images. Inspired by the LRIID, which is able to effectively recover the reflectance and shading components of the multispectral image, this article adapts the LRIID for obtaining the reflectance component of HSIs (which is the key feature for the discrimination of different objects). In order to exploit the reflectance component, we also propose a new dual window density (DWD)-based detector for anomaly detection, which is based on the idea that anomalies are usually rare pixels and, thus, exhibit low density in the image. The density analysis of DWD is intended not only to circumvent the Gaussian assumption regarding the distribution of HSI data, but also to mitigate the contamination of background statistics caused by anomalies. The dual window operation of our DWD is specifically designed to adaptively calculate the density of each pixel under test, so as to identify anomalies with nonspecific sizes. Our experimental results, obtained on a database of real HSIs including Airport, Beach, and Urban scenes, demonstrate the superiority of the proposed method in terms of detection performance when compared to other widely used anomaly detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得10
刚刚
毛豆应助科研通管家采纳,获得30
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
Excalibur应助科研通管家采纳,获得10
刚刚
刚刚
喝到几点应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
1秒前
852应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
鲨鱼的角应助科研通管家采纳,获得10
1秒前
爆爆应助科研通管家采纳,获得10
1秒前
毛豆应助科研通管家采纳,获得10
1秒前
Excalibur应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
毛豆应助科研通管家采纳,获得10
1秒前
轻松雨筠发布了新的文献求助30
2秒前
隐形曼青应助fhl采纳,获得10
3秒前
3秒前
诗韵完成签到,获得积分10
3秒前
4秒前
sci发布了新的文献求助10
6秒前
8秒前
认真的飞扬完成签到,获得积分10
9秒前
在水一方应助Loch采纳,获得10
12秒前
劲秉应助huamo采纳,获得10
13秒前
13秒前
Dorisxdn发布了新的文献求助10
13秒前
大模型应助pka采纳,获得10
14秒前
15秒前
诗韵关注了科研通微信公众号
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465336
求助须知:如何正确求助?哪些是违规求助? 3058502
关于积分的说明 9061839
捐赠科研通 2748797
什么是DOI,文献DOI怎么找? 1508157
科研通“疑难数据库(出版商)”最低求助积分说明 696806
邀请新用户注册赠送积分活动 696476