Improving the Effectiveness of Multiobjective Optimization Design of Urban Drainage Systems

数学优化 上游(联网) 进化算法 缩小 约束(计算机辅助设计) 洪水(心理学) 可靠性(半导体) 多目标优化 领域(数学分析) 计算机科学 工程优化 下游(制造业) 最优化问题 数学 工程类 物理 数学分析 量子力学 功率(物理) 计算机网络 运营管理 心理治疗师 心理学 几何学
作者
Ruozhou Lin,Feifei Zheng,Dragan Savić,Qingzhou Zhang,Xiangen Fang
出处
期刊:Water Resources Research [Wiley]
卷期号:56 (7) 被引量:18
标识
DOI:10.1029/2019wr026656
摘要

Abstract Capacity of urban drainage systems (UDSs) can substantially influence flooding properties of urban catchments. This motivates many studies to optimally design UDSs often using multiobjective evolutionary algorithms (MOEAs) as they can explore trade‐offs between conflicting objectives (e.g., cost vs. system reliability). However, MOEA‐based approaches are typically computationally demanding and their solutions are often practically unacceptable as engineering domain knowledge is often not explicitly considered. To address these two issues, this paper proposes an efficient optimization framework for UDS design, where an engineering‐based design method (EBDM) is developed to generate approximate solutions to initialize the MOEA's search, thereby greatly enhancing the optimization efficiency. To improve the solution practicality, two ideas have been implemented in the proposed optimization method (PM): (i) the variability of peak depths across pipes is minimized and (ii) a constraint is introduced to ensure that sizes of pipes in the downstream direction are no smaller than their corresponding upstream diameters. Two real‐world UDSs of different size are used to demonstrate the effectiveness of the PM. Results show that (i) the proposed EBDM is effective in producing initial solutions that are very close to the final solutions identified by the optimization methods, (ii) the minimization of the variability of peak depths in pipes is practically meaningful as it can facilitate to identify solutions with great ability in handling future uncertainties (e.g., rainfall variability), and (iii) the PM significantly improves optimization efficiency and solution practicality compared to the traditional optimization approach, with benefits being more prominent for larger UDSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逃之姚姚完成签到 ,获得积分10
1秒前
凡仔发布了新的文献求助30
2秒前
3秒前
hikevin126完成签到,获得积分10
4秒前
5秒前
《子非鱼》完成签到,获得积分10
5秒前
任无施完成签到 ,获得积分10
8秒前
别具一格完成签到 ,获得积分10
8秒前
zhou发布了新的文献求助10
9秒前
Ting完成签到,获得积分10
9秒前
10秒前
卓隶完成签到,获得积分10
11秒前
unicornmed给unicornmed的求助进行了留言
12秒前
慕青应助和谐静竹采纳,获得10
13秒前
13秒前
安静幻枫完成签到,获得积分10
14秒前
16秒前
星辰大海应助Sasap采纳,获得10
16秒前
星星完成签到,获得积分10
16秒前
善学以致用应助标致冬日采纳,获得10
17秒前
18秒前
李煜完成签到,获得积分10
18秒前
JUSTIN发布了新的文献求助20
18秒前
田様应助嘟嘟采纳,获得10
20秒前
奇迹的山完成签到,获得积分10
22秒前
小大巫发布了新的文献求助30
23秒前
HEIKU应助wjw采纳,获得10
23秒前
24秒前
HMONEY应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
打打应助科研通管家采纳,获得80
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
paparazzi221应助科研通管家采纳,获得50
25秒前
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
田様应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135044
求助须知:如何正确求助?哪些是违规求助? 2786005
关于积分的说明 7774726
捐赠科研通 2441825
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825