Refined tooth and pulp segmentation using U-Net in CBCT image

分割 计算机科学 人工智能 牙髓(牙) 计算机视觉 最小边界框 牙科 模式识别(心理学) 医学 图像(数学)
作者
Wei Duan,Yufei Chen,Qi Zhang,Xiang Lin,Xiaoyu Yang
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
卷期号:50 (6): 20200251-20200251 被引量:48
标识
DOI:10.1259/dmfr.20200251
摘要

Objectives The aim of this study was extracting any single tooth from a CBCT scan and performing tooth and pulp cavity segmentation to visualize and to have knowledge of internal anatomy relationships before undertaking endodontic therapy. Methods: We propose a two-phase deep learning solution for accurate tooth and pulp cavity segmentation. First, the single tooth bounding box is extracted automatically for both single-rooted tooth (ST) and multirooted tooth (MT). It is achieved by using the Region Proposal Network (RPN) with Feature Pyramid Network (FPN) method from the perspective of panorama. Second, U-Net model is iteratively performed for refined tooth and pulp segmentation against two types of tooth ST and MT, respectively. In light of rough data and annotation problems for dental pulp, we design a loss function with a smoothness penalty in the network. Furthermore, the multi-view data enhancement is proposed to solve the small data challenge and morphology structural problems. Results: The experimental results show that the proposed method can obtain an average dice 95.7% for ST, 96.2% for MT and 88.6% for pulp of ST, 87.6% for pulp of MT. Conclusions This study proposed a two-phase deep learning solution for fast and accurately extracting any single tooth from a CBCT scan and performing accurate tooth and pulp cavity segmentation. The 3D reconstruction results can completely show the morphology of teeth and pulps, it also provides valuable data for further research and clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
热心市民小红花应助小远采纳,获得10
2秒前
段皖顺完成签到 ,获得积分10
3秒前
4秒前
5秒前
6秒前
水木公完成签到,获得积分10
7秒前
8秒前
马小马完成签到,获得积分10
8秒前
9秒前
禮貌发布了新的文献求助30
10秒前
在水一方应助PYF采纳,获得40
10秒前
坩埚钳完成签到,获得积分10
11秒前
Stsirywtbd完成签到,获得积分10
11秒前
lalala发布了新的文献求助10
12秒前
13秒前
孙雪松完成签到 ,获得积分10
13秒前
15秒前
成就盼芙发布了新的文献求助20
16秒前
苗条棒棒糖完成签到,获得积分10
17秒前
番茄玉米排骨汤给番茄玉米排骨汤的求助进行了留言
17秒前
battle完成签到,获得积分10
17秒前
JamesPei应助现代雪晴采纳,获得10
18秒前
一心完成签到,获得积分10
18秒前
润鑫完成签到,获得积分10
18秒前
yaruyou发布了新的文献求助10
18秒前
18秒前
研友_VZG7GZ应助wonhui采纳,获得10
19秒前
20秒前
22秒前
周可以发布了新的文献求助10
24秒前
眼睛大雨筠应助SOulemaftg采纳,获得50
24秒前
24秒前
袁睿韬应助Captain采纳,获得10
24秒前
24秒前
25秒前
25秒前
25秒前
kekerenren发布了新的文献求助10
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371