亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Refined tooth and pulp segmentation using U-Net in CBCT image

分割 计算机科学 人工智能 牙髓(牙) 计算机视觉 最小边界框 牙科 模式识别(心理学) 医学 图像(数学)
作者
Wei Duan,Yufei Chen,Qi Zhang,Xiang Lin,Xiaoyu Yang
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:50 (6): 20200251-20200251 被引量:48
标识
DOI:10.1259/dmfr.20200251
摘要

Objectives The aim of this study was extracting any single tooth from a CBCT scan and performing tooth and pulp cavity segmentation to visualize and to have knowledge of internal anatomy relationships before undertaking endodontic therapy. Methods: We propose a two-phase deep learning solution for accurate tooth and pulp cavity segmentation. First, the single tooth bounding box is extracted automatically for both single-rooted tooth (ST) and multirooted tooth (MT). It is achieved by using the Region Proposal Network (RPN) with Feature Pyramid Network (FPN) method from the perspective of panorama. Second, U-Net model is iteratively performed for refined tooth and pulp segmentation against two types of tooth ST and MT, respectively. In light of rough data and annotation problems for dental pulp, we design a loss function with a smoothness penalty in the network. Furthermore, the multi-view data enhancement is proposed to solve the small data challenge and morphology structural problems. Results: The experimental results show that the proposed method can obtain an average dice 95.7% for ST, 96.2% for MT and 88.6% for pulp of ST, 87.6% for pulp of MT. Conclusions This study proposed a two-phase deep learning solution for fast and accurately extracting any single tooth from a CBCT scan and performing accurate tooth and pulp cavity segmentation. The 3D reconstruction results can completely show the morphology of teeth and pulps, it also provides valuable data for further research and clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿应助坚守初心采纳,获得10
3秒前
8秒前
安雯完成签到 ,获得积分10
13秒前
13秒前
骆其为清完成签到,获得积分10
15秒前
LEMON发布了新的文献求助10
17秒前
18秒前
hoy完成签到 ,获得积分10
19秒前
自然怀蕾发布了新的文献求助10
21秒前
阿幽发布了新的文献求助10
24秒前
伟大的鲁路皇完成签到,获得积分10
26秒前
梨炒栗子完成签到,获得积分10
30秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
34秒前
牧羊人发布了新的文献求助10
38秒前
null应助Pendulium采纳,获得10
44秒前
CNY完成签到 ,获得积分10
46秒前
48秒前
51秒前
量子星尘发布了新的文献求助10
1分钟前
安静的从梦完成签到 ,获得积分10
1分钟前
陈杰完成签到,获得积分10
1分钟前
阿幽完成签到 ,获得积分10
1分钟前
1分钟前
zachary009完成签到 ,获得积分10
1分钟前
科研通AI6应助字母采纳,获得10
1分钟前
CapQing应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
旺仔先生完成签到,获得积分0
1分钟前
聪明勇敢有力气完成签到 ,获得积分10
1分钟前
1分钟前
MasterE完成签到,获得积分10
1分钟前
pia叽完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
MasterE发布了新的文献求助10
1分钟前
lyh完成签到,获得积分10
1分钟前
null应助Pendulium采纳,获得10
1分钟前
点点发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595648
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14817947
捐赠科研通 4651117
什么是DOI,文献DOI怎么找? 2535539
邀请新用户注册赠送积分活动 1503494
关于科研通互助平台的介绍 1469743