Refined tooth and pulp segmentation using U-Net in CBCT image

分割 计算机科学 人工智能 牙髓(牙) 计算机视觉 最小边界框 牙科 模式识别(心理学) 医学 图像(数学)
作者
Wei Duan,Yufei Chen,Qi Zhang,Xiang Lin,Xiaoyu Yang
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
卷期号:50 (6): 20200251-20200251 被引量:48
标识
DOI:10.1259/dmfr.20200251
摘要

Objectives The aim of this study was extracting any single tooth from a CBCT scan and performing tooth and pulp cavity segmentation to visualize and to have knowledge of internal anatomy relationships before undertaking endodontic therapy. Methods: We propose a two-phase deep learning solution for accurate tooth and pulp cavity segmentation. First, the single tooth bounding box is extracted automatically for both single-rooted tooth (ST) and multirooted tooth (MT). It is achieved by using the Region Proposal Network (RPN) with Feature Pyramid Network (FPN) method from the perspective of panorama. Second, U-Net model is iteratively performed for refined tooth and pulp segmentation against two types of tooth ST and MT, respectively. In light of rough data and annotation problems for dental pulp, we design a loss function with a smoothness penalty in the network. Furthermore, the multi-view data enhancement is proposed to solve the small data challenge and morphology structural problems. Results: The experimental results show that the proposed method can obtain an average dice 95.7% for ST, 96.2% for MT and 88.6% for pulp of ST, 87.6% for pulp of MT. Conclusions This study proposed a two-phase deep learning solution for fast and accurately extracting any single tooth from a CBCT scan and performing accurate tooth and pulp cavity segmentation. The 3D reconstruction results can completely show the morphology of teeth and pulps, it also provides valuable data for further research and clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故酒应助嗯嗯采纳,获得10
1秒前
爆米花应助Catalysis123采纳,获得10
2秒前
赘婿应助忧郁的砖家采纳,获得10
3秒前
jiuwu完成签到,获得积分10
3秒前
橘子29发布了新的文献求助10
4秒前
4秒前
teamguichu完成签到 ,获得积分10
5秒前
7秒前
小蘑菇应助一一采纳,获得10
8秒前
8秒前
香蕉书兰完成签到,获得积分20
9秒前
哈哈哈完成签到,获得积分20
9秒前
陶佳仪发布了新的文献求助10
10秒前
hsj完成签到,获得积分10
10秒前
Jiang发布了新的文献求助10
11秒前
HMLM完成签到,获得积分10
12秒前
传奇3应助胡豆豆采纳,获得10
13秒前
子舆完成签到 ,获得积分10
13秒前
哈哈哈发布了新的文献求助10
13秒前
Jasper应助琪求好运采纳,获得10
14秒前
lalala发布了新的文献求助10
15秒前
16秒前
Lis发布了新的文献求助10
16秒前
18秒前
唐俊杰完成签到,获得积分10
18秒前
19秒前
19秒前
酷波er应助圆圆的馒头采纳,获得10
19秒前
20秒前
白踏歌发布了新的文献求助10
20秒前
科研通AI6应助哈哈哈采纳,获得10
20秒前
21秒前
ys完成签到,获得积分10
23秒前
Carbonzinc发布了新的文献求助10
23秒前
小鹏子发布了新的文献求助10
24秒前
浮游应助goldNAN采纳,获得10
24秒前
xyc完成签到 ,获得积分10
24秒前
mihhhhh发布了新的文献求助10
25秒前
草学研究完成签到,获得积分10
25秒前
JG完成签到 ,获得积分10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224818
求助须知:如何正确求助?哪些是违规求助? 4396749
关于积分的说明 13684880
捐赠科研通 4261194
什么是DOI,文献DOI怎么找? 2338338
邀请新用户注册赠送积分活动 1335711
关于科研通互助平台的介绍 1291564