Refined tooth and pulp segmentation using U-Net in CBCT image

分割 计算机科学 人工智能 牙髓(牙) 计算机视觉 最小边界框 牙科 模式识别(心理学) 医学 图像(数学)
作者
Wei Duan,Yufei Chen,Qi Zhang,Xiang Lin,Xiaoyu Yang
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:50 (6): 20200251-20200251 被引量:48
标识
DOI:10.1259/dmfr.20200251
摘要

Objectives The aim of this study was extracting any single tooth from a CBCT scan and performing tooth and pulp cavity segmentation to visualize and to have knowledge of internal anatomy relationships before undertaking endodontic therapy. Methods: We propose a two-phase deep learning solution for accurate tooth and pulp cavity segmentation. First, the single tooth bounding box is extracted automatically for both single-rooted tooth (ST) and multirooted tooth (MT). It is achieved by using the Region Proposal Network (RPN) with Feature Pyramid Network (FPN) method from the perspective of panorama. Second, U-Net model is iteratively performed for refined tooth and pulp segmentation against two types of tooth ST and MT, respectively. In light of rough data and annotation problems for dental pulp, we design a loss function with a smoothness penalty in the network. Furthermore, the multi-view data enhancement is proposed to solve the small data challenge and morphology structural problems. Results: The experimental results show that the proposed method can obtain an average dice 95.7% for ST, 96.2% for MT and 88.6% for pulp of ST, 87.6% for pulp of MT. Conclusions This study proposed a two-phase deep learning solution for fast and accurately extracting any single tooth from a CBCT scan and performing accurate tooth and pulp cavity segmentation. The 3D reconstruction results can completely show the morphology of teeth and pulps, it also provides valuable data for further research and clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅快远山发布了新的文献求助10
刚刚
美妮完成签到,获得积分20
刚刚
TTXS发布了新的文献求助10
刚刚
刘放发布了新的文献求助10
刚刚
kanoz完成签到,获得积分10
刚刚
刚刚
凡凡完成签到,获得积分20
刚刚
晓晓马儿完成签到 ,获得积分10
刚刚
万能图书馆应助shy采纳,获得10
刚刚
yitian完成签到,获得积分10
1秒前
专注笑珊完成签到,获得积分10
1秒前
甜美的沅完成签到 ,获得积分10
1秒前
自信的书南完成签到,获得积分10
1秒前
1秒前
2秒前
余喆发布了新的文献求助30
2秒前
wen完成签到,获得积分10
3秒前
任jie完成签到,获得积分10
3秒前
一水合羟基磷酸钙完成签到,获得积分10
3秒前
3秒前
FFSGF发布了新的文献求助10
3秒前
KID完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
凡凡发布了新的文献求助10
5秒前
myczh完成签到,获得积分10
5秒前
大雄完成签到 ,获得积分10
5秒前
馒头完成签到,获得积分20
6秒前
Herrily发布了新的文献求助10
6秒前
顾矜应助四季夏目采纳,获得10
6秒前
6秒前
888发布了新的文献求助10
7秒前
ttldhbds完成签到,获得积分10
7秒前
冷酷严青发布了新的文献求助10
7秒前
小白完成签到,获得积分10
7秒前
kk完成签到,获得积分10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246