材料科学
纳米材料基催化剂
催化作用
赫克反应
碳纳米管
钯
化学工程
聚合
X射线光电子能谱
纳米复合材料
纳米颗粒
纳米技术
有机化学
聚合物
化学
复合材料
工程类
作者
Zhengxiu Luo,Ning Wang,Xiaoyan Pei,Tao Dai,Zhigang Zhao,Congmei Chen,Maofei Ran,Wenjing Sun
标识
DOI:10.1016/j.jmst.2020.12.035
摘要
Heterogeneous Pd nanocatalysts are efficient catalysts for the Heck reaction but require multi-step, sophisticated procedures and harsh reaction conditions. In this work, a green and facile strategy has been developed to decorate Pd nanoparticles on polydopamine (PDA)-coated multi-walled carbon nanotubes (Pd/CNTs-PDA) via a one-pot method. The obtained nanoparticles were characterized by various techniques including transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, which proved that Pd NPs are well-dispersed on the PDA and between the surfaces of the PDA and CNTs. The resultant Pd/CNTs-PDA catalysts exhibit excellent catalytic reactivity toward the Heck reaction at low temperatures. Moreover, by DFT simulation, we found that during the PDA polymerization process, a large number of unsaturated N and CO species are more active than the groups on the PDA end product to anchor Pd NPs. The results provide evidence that the catalyst synthesized by the one-pot method exhibited good activity because sufficient active sites could be created to effectively promote Pd NPs dispersion during the dopamine polymerization process. Additionally, the Pd/CNTs-PDA catalyst was successfully employed in Heck cross-coupling reactions with various functionalized substrates. This method opens a window for the fabrication of high-performance nanocomposite catalysts under mild conditions using simple methods and has several potential applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI