A Fast Neighborhood Grouping Method for Hyperspectral Band Selection

高光谱成像 光谱带 计算机科学 冗余(工程) 遥感 熵(时间箭头) 数据立方体 人工智能 子空间拓扑 背景(考古学) 模式识别(心理学) 数据挖掘 物理 操作系统 考古 地理 量子力学
作者
Qi Wang,Qiang Li,Xuelong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (6): 5028-5039 被引量:111
标识
DOI:10.1109/tgrs.2020.3011002
摘要

Hyperspectral images can provide dozens to hundreds of continuous spectral bands, so the richness of information has been greatly improved. However, these bands lead to increasing complexity of data processing, and the redundancy of adjacent bands is large. Recently, although many band selection methods have been proposed, this task is rarely handled through the context information of the whole spectral bands. Moreover, the scholars mainly focus on the different numbers of selected bands to explain the influence by accuracy measures, neglecting how many bands to choose is appropriate. To tackle these issues, we propose a fast neighborhood grouping method for hyperspectral band selection (FNGBS). The hyperspectral image cube in space is partitioned into several groups using coarse-fine strategy. By doing so, it effectively mines the context information in a large spectrum range. Compared with most algorithms, the proposed method can obtain the most relevant and informative bands simultaneously as subset in accordance with two factors, such as local density and information entropy. In addition, our method can also automatically determine the minimum number of recommended bands by determinantal point process. Extensive experimental results on benchmark data sets demonstrate the proposed FNGBS achieves satisfactory performance against state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
P4完成签到 ,获得积分10
3秒前
mimicyang发布了新的文献求助10
3秒前
3秒前
4秒前
搞怪白易发布了新的文献求助10
5秒前
浦肯野应助irisjlj采纳,获得10
6秒前
迟大猫应助通~采纳,获得10
8秒前
10秒前
11秒前
木槿花难开完成签到,获得积分10
12秒前
小巧念寒完成签到,获得积分10
15秒前
玉ER完成签到,获得积分10
17秒前
希望天下0贩的0应助wei采纳,获得10
17秒前
北枳完成签到 ,获得积分10
21秒前
地精术士完成签到,获得积分10
22秒前
浙江嘉兴完成签到,获得积分10
22秒前
我是站长才怪应助通~采纳,获得10
24秒前
shiyu完成签到,获得积分10
24秒前
Herman_Chen完成签到,获得积分10
31秒前
Zn应助牛文文采纳,获得10
33秒前
33秒前
34秒前
贤惠的白开水完成签到 ,获得积分10
34秒前
英姑应助林林林采纳,获得10
35秒前
科研小民工应助Anquan采纳,获得30
35秒前
cyt9999发布了新的文献求助10
36秒前
天天快乐应助好难啊采纳,获得10
37秒前
干净的烧鹅完成签到,获得积分10
38秒前
39秒前
39秒前
在人中发布了新的文献求助10
40秒前
40秒前
fls221完成签到,获得积分10
41秒前
Laity完成签到,获得积分10
43秒前
43秒前
健忘捕发布了新的文献求助10
43秒前
林林林发布了新的文献求助10
44秒前
ok完成签到 ,获得积分10
45秒前
乐乐应助wewe采纳,获得30
45秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851