Leveraging social media data to study the community resilience of New York City to 2019 power outage

停电 弹性(材料科学) 心理弹性 功率(物理) 社会化媒体 社区复原力 心理学 计算机安全 社会学 计算机科学 社会心理学 工程类 电力系统 可靠性工程 万维网 物理 冗余(工程) 热力学 量子力学
作者
Lingyao Li,Zihui Ma,Tao Cao
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:51: 101776-101776 被引量:27
标识
DOI:10.1016/j.ijdrr.2020.101776
摘要

Power outages across the world have severe social impacts. The public's responses to power outages provide valuable insights into their capacities of adapting crisis and an invaluable perspective to demonstrate community resilience. As social media has connected people in the community, the discussion on social media can reflect their responses as a criterion of resilience throughout power outages in a timely and effective manner. In the field of power outages, the potentials of social media data have only been investigated with recent advancements of big data techniques. Nonetheless, studies focusing on community resilience using social media data are quite limited. We filled this gap by introducing a novel and quantitative method to study the community resilience throughout power outages, based on a case study on the Manhattan blackout occurred in July 2019. The study examined community resilience from both mental and behavioral perspectives via sentiment analysis and behavior analysis. The sentiment analysis was used to track people's mental outlook and shape the overall mental status during and after this emergency. On the other side, six major patterns of behaviors were identified, and the behavioral index was defined to learn how the community responded to power outages amid the response and recovery periods. Both the mental and behavioral results reveal that New York City recovered at approximately one and a half hours after the blackout occurred, implying a strong community resilience to such short and emergent power outage events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hql_sdu完成签到,获得积分10
1秒前
1秒前
Henry应助samuealndjw采纳,获得200
1秒前
调研昵称发布了新的文献求助10
4秒前
叶白山发布了新的文献求助10
4秒前
打打应助刘斌采纳,获得10
4秒前
苏书白应助火星上的无声采纳,获得10
4秒前
111完成签到,获得积分10
5秒前
爆米花应助风中听枫采纳,获得10
6秒前
科研通AI2S应助...采纳,获得10
6秒前
英俊的铭应助活力思枫采纳,获得10
7秒前
优雅苑睐完成签到,获得积分10
8秒前
10秒前
12秒前
12秒前
12秒前
爱学习的师关注了科研通微信公众号
14秒前
搞怪的熠彤完成签到,获得积分10
15秒前
15秒前
刘斌发布了新的文献求助10
17秒前
18秒前
乐观若烟完成签到 ,获得积分10
18秒前
风中听枫发布了新的文献求助10
18秒前
李小二完成签到,获得积分10
19秒前
科研通AI2S应助dongli6536采纳,获得10
21秒前
今后应助INGRID采纳,获得10
22秒前
22秒前
大有阳光应助文静的翠安采纳,获得10
23秒前
我是大兴发布了新的文献求助10
24秒前
24秒前
六点一横发布了新的文献求助10
25秒前
Orange应助GEZI采纳,获得10
25秒前
27秒前
zzz完成签到,获得积分10
30秒前
31秒前
allshestar完成签到 ,获得积分10
31秒前
32秒前
33秒前
酷炫迎波发布了新的文献求助10
34秒前
SciGPT应助蛮吉采纳,获得10
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149204
求助须知:如何正确求助?哪些是违规求助? 2800294
关于积分的说明 7839427
捐赠科研通 2457845
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628436
版权声明 601706