Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers

胶质瘤 H&E染色 病理 计算机科学 模式识别(心理学) 人工智能 医学 卷积神经网络 组织学 免疫组织化学 癌症研究
作者
Lei Jin,Feng Shi,Qiuping Chun,Hong Chen,Yixin Ma,Shuai Wu,Nazia Hameed,Chunming Mei,Junfeng Lu,Jun Zhang,Abudumijiti Aibaidula,Dinggang Shen,Jinsong Wu
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:23 (1): 44-52 被引量:78
标识
DOI:10.1093/neuonc/noaa163
摘要

Pathological diagnosis of glioma subtypes is essential for treatment planning and prognosis. Standard histological diagnosis of glioma is based on postoperative hematoxylin and eosin stained slides by neuropathologists. With advancing artificial intelligence (AI), the aim of this study was to determine whether deep learning can be applied to glioma classification.A neuropathological diagnostic platform is designed comprising a slide scanner and deep convolutional neural networks (CNNs) to classify 5 major histological subtypes of glioma to assist pathologists. The CNNs were trained and verified on over 79 990 histological patch images from 267 patients. A logical algorithm is used when molecular profiles are available.A new model of the squeeze-and-excitation block DenseNet with weighted cross-entropy (named SD-Net_WCE) is developed for the glioma classification task, which learns the recognizable features of glioma histology CNN-based independent diagnostic testing on data from 56 patients with 17 262 histological patch images demonstrated patch level accuracy of 86.5% and patient level accuracy of 87.5%. Histopathological classifications could be further amplified to integrated neuropathological diagnosis by 2 molecular markers (isocitrate dehydrogenase and 1p/19q).The model is capable of solving multiple classification tasks and can satisfactorily classify glioma subtypes. The system provides a novel aid for the integrated neuropathological diagnostic workflow of glioma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西番雅发布了新的文献求助10
1秒前
小猪完成签到 ,获得积分10
2秒前
123456发布了新的文献求助10
2秒前
沧海医僧笑完成签到,获得积分20
2秒前
3秒前
苹果酸奶完成签到 ,获得积分10
3秒前
3秒前
FashionBoy应助咕噜采纳,获得30
3秒前
奋斗的盼柳完成签到 ,获得积分10
4秒前
共享精神应助福建彭于晏采纳,获得10
4秒前
CodeCraft应助咕噜咕噜采纳,获得30
6秒前
7秒前
8秒前
10秒前
西番雅完成签到,获得积分10
10秒前
酷波er应助沧海医僧笑采纳,获得30
13秒前
程克勤完成签到,获得积分10
15秒前
772829完成签到 ,获得积分10
15秒前
净净子完成签到,获得积分10
16秒前
ttxpx驳回了ding应助
20秒前
罗又柔应助醉熏的盼曼采纳,获得10
21秒前
zxx完成签到 ,获得积分10
21秒前
23秒前
傻子与白痴完成签到,获得积分10
25秒前
不秃头完成签到,获得积分10
27秒前
FOREST发布了新的文献求助10
28秒前
sci梦发布了新的文献求助10
29秒前
31秒前
不配.应助ponytail采纳,获得10
33秒前
小雨关注了科研通微信公众号
33秒前
不配.应助诚心爆米花采纳,获得20
33秒前
loudly完成签到,获得积分10
35秒前
WangRui完成签到,获得积分10
41秒前
KIKI完成签到,获得积分0
41秒前
搞怪的从雪关注了科研通微信公众号
41秒前
rouhan完成签到,获得积分10
42秒前
传奇3应助Gilbert采纳,获得10
43秒前
44秒前
yjf完成签到,获得积分10
45秒前
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138572
求助须知:如何正确求助?哪些是违规求助? 2789520
关于积分的说明 7791526
捐赠科研通 2445903
什么是DOI,文献DOI怎么找? 1300715
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079