Diagnostic classification of cancers using extreme gradient boosting algorithm and multi-omics data

计算机科学 机器学习 人工智能 Boosting(机器学习) 组学 鉴定(生物学) DNA甲基化 阶段(地层学) 癌症 算法 数据挖掘 生物信息学 医学 生物 基因 基因表达 内科学 古生物学 生物化学 植物
作者
Baoshan Ma,Fanyu Meng,Yan Ge,Haowen Yan,Bingjie Chai,Fengju Song
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:121: 103761-103761 被引量:154
标识
DOI:10.1016/j.compbiomed.2020.103761
摘要

Accurate diagnostic classification of cancers can greatly help physicians to choose surveillance and treatment strategies for patients. Following the explosive growth of huge amounts of biological data, the shift from traditional biostatistical methods to computer-aided means has made machine-learning methods as an integral part of today's cancer prognosis prediction. In this work, we proposed a classification model by leveraging the power of extreme gradient boosting (XGBoost) and using increasingly complex multi-omics data with the aim to separate early stage and late stage cancers. We applied XGBoost model to four kinds of cancer data downloaded from TCGA and compared its performance with other popular machine-learning methods. The experimental results showed that our method obtained statistically significantly better or comparable predictive performance. The results of this study also revealed that DNA methylation outperforms other molecular data (mRNA expression and miRNA expression) in terms of accuracy and stability for discriminating between early stage and late stage groups. Furthermore, integration of multi-omics data by autoencoder can enhance the classification accuracy of cancer stage. Finally, we conducted bioinformatics analyses to assess the medical utility of the significant genes ranked by their importance using XGBoost algorithm. Extensively comparative experiments demonstrated that the XGBoost method has a remarkable performance in predicting the stage of cancer patients with multi-omics data. Moreover, identification of novel candidate genes associated with cancer stages would contribute to further elucidate disease pathogenesis and develop novel therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Suda发布了新的文献求助10
刚刚
大杨发布了新的文献求助10
3秒前
Suda完成签到,获得积分10
6秒前
HZW完成签到,获得积分10
8秒前
Hou完成签到,获得积分10
8秒前
Evan完成签到,获得积分10
8秒前
9秒前
azure发布了新的文献求助10
12秒前
脾气暴躁的小兔完成签到,获得积分10
13秒前
xzy998应助Zz采纳,获得10
14秒前
安详的斓完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
16秒前
留胡子的夏寒应助大杨采纳,获得10
17秒前
祎思发布了新的文献求助10
17秒前
小小aa16完成签到,获得积分10
18秒前
shjyang完成签到,获得积分0
19秒前
许孤风完成签到,获得积分20
19秒前
jokerhoney发布了新的文献求助10
19秒前
Lucas应助雷老板采纳,获得20
20秒前
在水一方应助fddfs采纳,获得10
21秒前
23秒前
azure完成签到,获得积分10
23秒前
25秒前
26秒前
酷波er应助zyc采纳,获得10
28秒前
29秒前
joy发布了新的文献求助10
29秒前
坚强的安柏完成签到,获得积分10
30秒前
虚拟的熠彤完成签到,获得积分10
30秒前
Dora发布了新的文献求助10
31秒前
许孤风发布了新的文献求助10
31秒前
wenli发布了新的文献求助30
33秒前
lincanmou2发布了新的文献求助10
33秒前
tong77完成签到,获得积分20
36秒前
舒心砖头完成签到,获得积分20
36秒前
Zqq完成签到,获得积分10
39秒前
JamesPei应助ste56采纳,获得10
39秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380932
求助须知:如何正确求助?哪些是违规求助? 2995968
关于积分的说明 8766526
捐赠科研通 2681119
什么是DOI,文献DOI怎么找? 1468354
科研通“疑难数据库(出版商)”最低求助积分说明 678977
邀请新用户注册赠送积分活动 671007