Artificial Blood Vessel Frameworks from 3D Printing-Based Super-Assembly as In Vitro Models for Early Diagnosis of Intracranial Aneurysms

血流 剪应力 血流动力学 磁共振成像 生物医学工程 计算流体力学 动脉瘤 材料科学 医学 放射科 心脏病学 机械 物理 复合材料
作者
Rongke Gao,Xin Tian,Qizheng Li,Xuefei Song,Bing Shao,Jie Zeng,Zhanjie Liu,Debo Zhi,Gang Zhao,Hongming Xia,Bensheng Qiu,Guang Chen,Kang Liang,Pu Chen,Dongyuan Zhao,Biao Kong
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:32 (7): 3188-3198 被引量:8
标识
DOI:10.1021/acs.chemmater.0c00208
摘要

Intracranial aneurysm (IA) is a bulge from the weak area in the wall of cerebral blood vessels and can cause serious diseases, such as hemorrhagic stroke and other neurologic diseases. Experimental and computational results demonstrated that the different flow fields of blood had a great influence on the formation, growth, and rupture of IAs. Therefore, it is crucial to acquire flow field of blood for fully characterizing the hemodynamics. In this study, six transparent models of artificial blood vessels with different growth stages of IAs by 3D printing-based super-assembly technology were first fabricated. Epoxy-based resin was used to form a 3D pipeline structure, and it played an important role in restoring the appearance of IAs and comparing with the medical image. Phase contrast-magnetic resonance imaging (PC-MRI) and computational fluid dynamics (CFD) were used to assess flow fields of IA during growth. The internal flow and wall shear stress (WSS) of inner IAs showed a very low level in the cardiac cycle compared with normal blood vessels. The CFD and PC-MRI demonstrated that the internal flow of IA gradually interfered with intravascular flow because IAs formed, and this interference gradually reduced after a mid-term stage. Meanwhile, the growth and rupture points of side IAs mainly located in the efferent region of IAs may result from the blood flow becoming extremely slow in this area. This proposed 3D printing-based super-assembly technology reduced the replica size by at least 80% and provided a visual internal structure to obtain MR imaging data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵小怪发布了新的文献求助30
4秒前
8秒前
陈chq发布了新的文献求助10
8秒前
11秒前
13秒前
研友_VZG7GZ应助哭泣的丝采纳,获得10
13秒前
爆米花应助涨涨涨采纳,获得10
14秒前
fufu完成签到 ,获得积分10
15秒前
丰荣完成签到,获得积分10
16秒前
彭于晏应助junjun采纳,获得30
16秒前
su发布了新的文献求助10
17秒前
jam完成签到,获得积分10
17秒前
18秒前
无花果应助科研通管家采纳,获得10
19秒前
19秒前
华仔应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
不懈奋进应助科研通管家采纳,获得30
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
小旋风应助科研通管家采纳,获得10
19秒前
研友_ED5GK应助科研通管家采纳,获得30
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
搜集达人应助陈chq采纳,获得10
20秒前
20秒前
22秒前
22秒前
23秒前
23秒前
所所应助机灵一兰采纳,获得10
24秒前
涨涨涨发布了新的文献求助10
25秒前
26秒前
Asma_2104发布了新的文献求助10
28秒前
大个应助猪猪女孩采纳,获得30
28秒前
笨小孩发布了新的文献求助10
28秒前
阳地黄发布了新的文献求助10
28秒前
chen发布了新的文献求助10
30秒前
33秒前
allucky完成签到,获得积分10
33秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3080354
求助须知:如何正确求助?哪些是违规求助? 2733117
关于积分的说明 7526931
捐赠科研通 2382128
什么是DOI,文献DOI怎么找? 1263212
科研通“疑难数据库(出版商)”最低求助积分说明 612225
版权声明 597498