亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semiconducting Quantum Dots for Bioimaging

纳米技术 材料科学 量子点 光电子学
作者
Debasis Bera,Lei Qian,Paul H. Holloway
出处
期刊:CRC Press eBooks [Informa]
卷期号:: 369-386 被引量:9
标识
DOI:10.3109/9781420078053-23
摘要

INTRODUCTION There are several noninvasive imaging techniques available for molecular imaging purposes, such as fluorescence imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), ultrasonography, and many more (1). Across the electromagnetic spectrum, these techniques span from ultrasound to X-rays to gamma rays. Currently, MRI, optical imaging, and nuclear imaging are emerging as the key molecular imaging techniques (1). They differ in terms of sensitivity, resolution, complexity, acquisition time, and operational cost. However, these techniques are complementary to each other most of the time. There are several reviews on the physical basis of these techniques (1,2), instrumentation (3,4), and issues that affect their performance (5,6). Currently, a significant amount of research is aimed at using the unique optical properties of quantum dots (Qdots) in biological imaging. Much of optical bioimaging is based on traditional dyes (7,8), but there are several drawbacks associated with their use. It is well known that cell autofluorescence in the visible spectrum (9) leads to the following five effects: (i) The autofluorescence can mask signals from labeled organic dye molecules. (ii) Instability of organic dye under photoirradiation is well known in bioimaging, which results in only short observation times. (iii) In general, conventional dye molecules have a narrow excitation window, which makes simultaneous excitation of multiple dyes difficult. (iv) Dyes are sensitive to the environmental conditions, such as variation in pH. (v) Most of the organic dyes have a broad emission spectrum with a long tail at red wavelengths, which creates spectral crosstalk between different detection channels and makes it difficult to quantitate the amounts of different probes. Qdots, on the other hand, are of interest in biology for several reasons, including (i) higher extinction coefficients, (ii) higher quantum yields (QYs), (iii) less photobleaching, (iv) absorbance and emissions can be tuned with size, (v) generally broad excitation windows but narrow emission peaks, (vi) multiple Qdots can be used in the same assay with minimal interference with each other, (vii) toxicity may be less than conventional organic dyes, and (viii) the Qdots may be functionalized with different bioactive agents. In addition, near infrared (NIR) emitting Qdots can be used to avoid interference from the autofluorescence, because cell, hemoglobin, and water have lower absorption coefficient and scattering effects in the NIR region (650-900) (Fig. 1). Light is routinely used for intravital microscopy, but imaging of deeper tissue (500 m-1 cm) requires the use of NIR light (10). Inorganic Qdots are more photostable under ultraviolet excitation than organic molecules, and their fluorescence is more saturated. In general, as-synthesized Qdots are very hydrophobic. Qdots have been synthesized by different bottom-up chemical methods, such as0.10.01A bsor ptio nco effic ient (cm1 )500 600 700 Wavelength (nm)800 900Near IR windowH2OHbO2Hbsol-gel (11,12), microemulsion (13,14), competitative reaction chemistry (15,16), hot solution decomposition method (17,18), microwave irradiation process (19,20), and hydrothermal synthesis procedure (21,22). For the production of highly crystalline, monodispersed Qdots, the hot solution decomposition method is the best method known to date. To convert Qdots from hydrophobic to hydrophilic, a silica shell is generally grown on the Qdots. Growth of silica shell can be achieved by microemulsion and/or sol-gel methods. Several review articles and book chapters (23-27) can be found with elaborate discussions on Qdots. Hence, the properties of Qdots are briefly overviewed in the following section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哒布6完成签到 ,获得积分10
刚刚
1秒前
Hao发布了新的文献求助10
2秒前
菲晗子完成签到,获得积分10
3秒前
Hao完成签到,获得积分20
9秒前
王珺发布了新的文献求助10
9秒前
啦啦啦不吃辣完成签到 ,获得积分20
14秒前
NexusExplorer应助调皮乌冬面采纳,获得10
19秒前
王珺完成签到,获得积分10
26秒前
39秒前
Jiangzhibing发布了新的文献求助30
45秒前
可爱的函函应助Jiangzhibing采纳,获得10
50秒前
53秒前
忽晚完成签到 ,获得积分10
54秒前
59秒前
yyyalles发布了新的文献求助10
1分钟前
CipherSage应助Tatotota采纳,获得30
1分钟前
123123完成签到 ,获得积分10
1分钟前
iNk应助周日不上发条采纳,获得20
1分钟前
yyyalles完成签到,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
脑洞疼应助浮名半生采纳,获得10
1分钟前
典雅的纸飞机完成签到,获得积分10
1分钟前
zhi完成签到,获得积分10
1分钟前
隔壁巷子里的劉完成签到 ,获得积分10
1分钟前
十有五完成签到,获得积分10
1分钟前
1分钟前
科研小南完成签到 ,获得积分10
1分钟前
浮名半生发布了新的文献求助10
1分钟前
Orange应助阿森采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得30
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
2分钟前
领导范儿应助科研通管家采纳,获得30
2分钟前
yjh发布了新的文献求助10
2分钟前
稳重母鸡完成签到 ,获得积分10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963149
求助须知:如何正确求助?哪些是违规求助? 3509051
关于积分的说明 11144954
捐赠科研通 3242088
什么是DOI,文献DOI怎么找? 1791744
邀请新用户注册赠送积分活动 873127
科研通“疑难数据库(出版商)”最低求助积分说明 803622