Semiconducting Quantum Dots for Bioimaging

纳米技术 材料科学 量子点 光电子学
作者
Debasis Bera,Lei Qian,Paul H. Holloway
出处
期刊:CRC Press eBooks [Informa]
卷期号:: 369-386 被引量:9
标识
DOI:10.3109/9781420078053-23
摘要

INTRODUCTION There are several noninvasive imaging techniques available for molecular imaging purposes, such as fluorescence imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), ultrasonography, and many more (1). Across the electromagnetic spectrum, these techniques span from ultrasound to X-rays to gamma rays. Currently, MRI, optical imaging, and nuclear imaging are emerging as the key molecular imaging techniques (1). They differ in terms of sensitivity, resolution, complexity, acquisition time, and operational cost. However, these techniques are complementary to each other most of the time. There are several reviews on the physical basis of these techniques (1,2), instrumentation (3,4), and issues that affect their performance (5,6). Currently, a significant amount of research is aimed at using the unique optical properties of quantum dots (Qdots) in biological imaging. Much of optical bioimaging is based on traditional dyes (7,8), but there are several drawbacks associated with their use. It is well known that cell autofluorescence in the visible spectrum (9) leads to the following five effects: (i) The autofluorescence can mask signals from labeled organic dye molecules. (ii) Instability of organic dye under photoirradiation is well known in bioimaging, which results in only short observation times. (iii) In general, conventional dye molecules have a narrow excitation window, which makes simultaneous excitation of multiple dyes difficult. (iv) Dyes are sensitive to the environmental conditions, such as variation in pH. (v) Most of the organic dyes have a broad emission spectrum with a long tail at red wavelengths, which creates spectral crosstalk between different detection channels and makes it difficult to quantitate the amounts of different probes. Qdots, on the other hand, are of interest in biology for several reasons, including (i) higher extinction coefficients, (ii) higher quantum yields (QYs), (iii) less photobleaching, (iv) absorbance and emissions can be tuned with size, (v) generally broad excitation windows but narrow emission peaks, (vi) multiple Qdots can be used in the same assay with minimal interference with each other, (vii) toxicity may be less than conventional organic dyes, and (viii) the Qdots may be functionalized with different bioactive agents. In addition, near infrared (NIR) emitting Qdots can be used to avoid interference from the autofluorescence, because cell, hemoglobin, and water have lower absorption coefficient and scattering effects in the NIR region (650-900) (Fig. 1). Light is routinely used for intravital microscopy, but imaging of deeper tissue (500 m-1 cm) requires the use of NIR light (10). Inorganic Qdots are more photostable under ultraviolet excitation than organic molecules, and their fluorescence is more saturated. In general, as-synthesized Qdots are very hydrophobic. Qdots have been synthesized by different bottom-up chemical methods, such as0.10.01A bsor ptio nco effic ient (cm1 )500 600 700 Wavelength (nm)800 900Near IR windowH2OHbO2Hbsol-gel (11,12), microemulsion (13,14), competitative reaction chemistry (15,16), hot solution decomposition method (17,18), microwave irradiation process (19,20), and hydrothermal synthesis procedure (21,22). For the production of highly crystalline, monodispersed Qdots, the hot solution decomposition method is the best method known to date. To convert Qdots from hydrophobic to hydrophilic, a silica shell is generally grown on the Qdots. Growth of silica shell can be achieved by microemulsion and/or sol-gel methods. Several review articles and book chapters (23-27) can be found with elaborate discussions on Qdots. Hence, the properties of Qdots are briefly overviewed in the following section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
之星君发布了新的文献求助10
刚刚
lc完成签到,获得积分10
刚刚
1秒前
廖英健发布了新的文献求助100
1秒前
guihai发布了新的文献求助10
2秒前
KAIDOHARA完成签到,获得积分10
2秒前
徐蹇发布了新的文献求助10
2秒前
微风发布了新的文献求助20
2秒前
隐形曼青应助木木三采纳,获得10
3秒前
浮游应助执名之念采纳,获得10
3秒前
qwe发布了新的文献求助10
3秒前
ding应助Tan采纳,获得10
3秒前
dida完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
烟花应助勤劳的乐天采纳,获得30
5秒前
科研通AI2S应助夜雨林凉采纳,获得10
5秒前
5秒前
5秒前
xuan发布了新的文献求助10
6秒前
香蕉觅云应助娘口三三采纳,获得10
7秒前
简单黑裤完成签到,获得积分10
8秒前
8秒前
安安完成签到,获得积分20
9秒前
鎏祈发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
许波达发布了新的文献求助10
11秒前
欢喜烧鹅发布了新的文献求助10
11秒前
su完成签到,获得积分10
11秒前
12秒前
安安发布了新的文献求助10
12秒前
烟花应助本森采纳,获得10
12秒前
汉堡包应助猪江黎学者采纳,获得10
14秒前
1q完成签到,获得积分10
14秒前
老的火龙果完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263389
求助须知:如何正确求助?哪些是违规求助? 4423991
关于积分的说明 13771463
捐赠科研通 4298989
什么是DOI,文献DOI怎么找? 2358843
邀请新用户注册赠送积分活动 1355116
关于科研通互助平台的介绍 1316331