Semiconducting Quantum Dots for Bioimaging

纳米技术 材料科学 量子点 光电子学
作者
Debasis Bera,Lei Qian,Paul H. Holloway
出处
期刊:CRC Press eBooks [Informa]
卷期号:: 369-386 被引量:9
标识
DOI:10.3109/9781420078053-23
摘要

INTRODUCTION There are several noninvasive imaging techniques available for molecular imaging purposes, such as fluorescence imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), ultrasonography, and many more (1). Across the electromagnetic spectrum, these techniques span from ultrasound to X-rays to gamma rays. Currently, MRI, optical imaging, and nuclear imaging are emerging as the key molecular imaging techniques (1). They differ in terms of sensitivity, resolution, complexity, acquisition time, and operational cost. However, these techniques are complementary to each other most of the time. There are several reviews on the physical basis of these techniques (1,2), instrumentation (3,4), and issues that affect their performance (5,6). Currently, a significant amount of research is aimed at using the unique optical properties of quantum dots (Qdots) in biological imaging. Much of optical bioimaging is based on traditional dyes (7,8), but there are several drawbacks associated with their use. It is well known that cell autofluorescence in the visible spectrum (9) leads to the following five effects: (i) The autofluorescence can mask signals from labeled organic dye molecules. (ii) Instability of organic dye under photoirradiation is well known in bioimaging, which results in only short observation times. (iii) In general, conventional dye molecules have a narrow excitation window, which makes simultaneous excitation of multiple dyes difficult. (iv) Dyes are sensitive to the environmental conditions, such as variation in pH. (v) Most of the organic dyes have a broad emission spectrum with a long tail at red wavelengths, which creates spectral crosstalk between different detection channels and makes it difficult to quantitate the amounts of different probes. Qdots, on the other hand, are of interest in biology for several reasons, including (i) higher extinction coefficients, (ii) higher quantum yields (QYs), (iii) less photobleaching, (iv) absorbance and emissions can be tuned with size, (v) generally broad excitation windows but narrow emission peaks, (vi) multiple Qdots can be used in the same assay with minimal interference with each other, (vii) toxicity may be less than conventional organic dyes, and (viii) the Qdots may be functionalized with different bioactive agents. In addition, near infrared (NIR) emitting Qdots can be used to avoid interference from the autofluorescence, because cell, hemoglobin, and water have lower absorption coefficient and scattering effects in the NIR region (650-900) (Fig. 1). Light is routinely used for intravital microscopy, but imaging of deeper tissue (500 m-1 cm) requires the use of NIR light (10). Inorganic Qdots are more photostable under ultraviolet excitation than organic molecules, and their fluorescence is more saturated. In general, as-synthesized Qdots are very hydrophobic. Qdots have been synthesized by different bottom-up chemical methods, such as0.10.01A bsor ptio nco effic ient (cm1 )500 600 700 Wavelength (nm)800 900Near IR windowH2OHbO2Hbsol-gel (11,12), microemulsion (13,14), competitative reaction chemistry (15,16), hot solution decomposition method (17,18), microwave irradiation process (19,20), and hydrothermal synthesis procedure (21,22). For the production of highly crystalline, monodispersed Qdots, the hot solution decomposition method is the best method known to date. To convert Qdots from hydrophobic to hydrophilic, a silica shell is generally grown on the Qdots. Growth of silica shell can be achieved by microemulsion and/or sol-gel methods. Several review articles and book chapters (23-27) can be found with elaborate discussions on Qdots. Hence, the properties of Qdots are briefly overviewed in the following section.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
默默的井发布了新的文献求助10
3秒前
4秒前
卓梨发布了新的文献求助10
5秒前
凡凡发布了新的文献求助30
5秒前
8秒前
陈洋完成签到 ,获得积分10
8秒前
wunai012321完成签到,获得积分20
10秒前
1994lzj发布了新的文献求助10
10秒前
白学长应助机灵的幻柏采纳,获得50
11秒前
12秒前
永吉发布了新的文献求助10
12秒前
慕青应助小孙采纳,获得10
15秒前
wunai012321发布了新的文献求助10
15秒前
15秒前
16秒前
holmes发布了新的文献求助10
17秒前
完美世界应助周周采纳,获得10
17秒前
爆米花应助默默的井采纳,获得10
18秒前
大头菜完成签到,获得积分10
19秒前
桐桐应助科研通管家采纳,获得30
21秒前
Ava应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
ceeray23应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
wangzai111完成签到,获得积分10
22秒前
Persepolis发布了新的文献求助10
23秒前
搞怪迎夏完成签到,获得积分10
24秒前
Leisure_Lee完成签到,获得积分10
25秒前
菜鸟12号完成签到 ,获得积分10
26秒前
26秒前
27秒前
27秒前
28秒前
28秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462675
求助须知:如何正确求助?哪些是违规求助? 3056170
关于积分的说明 9050910
捐赠科研通 2745799
什么是DOI,文献DOI怎么找? 1506591
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695693