A multistage distributionally robust optimization approach to water allocation under climate uncertainty

模棱两可 数学优化 稳健优化 计算机科学 水资源 数学 生态学 生物 程序设计语言
作者
Jangho Park,Güzi̇n Bayraksan
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:306 (2): 849-871 被引量:9
标识
DOI:10.1016/j.ejor.2022.06.049
摘要

This paper investigates a Multistage Distributionally Robust Optimization (MDRO) approach to water allocation under climate uncertainty. The MDRO is formed by creating sets of conditional distributions (called conditional ambiguity sets) on a finite scenario tree. The distributions in the conditional ambiguity sets remain close to a nominal conditional distribution according a ϕ-divergence (e.g., Kullback-Leibler divergence, Hellinger distance, Burg entropy, etc.). The paper discusses a decomposition algorithm to solve the resulting MDRO with ϕ-divergences, which uses the dual formulation and solves only linear subproblems instead of convex ones. Some properties of the algorithm such as generating feasible policies and valid upper/lower bounds are established. The paper then applies the modeling and solution techniques to allocate water in a rapidly-developing area of Tucson, Arizona. Tucson, like many arid and semi-arid regions around the world, faces considerable uncertainty in its ability to provide water for its citizens in the future. The primary sources of uncertainty in the Tucson region include (1) unpredictable population growth, (2) the availability of water from the Colorado River, and (3) the effects of climate variability on water consumption. This paper integrates forecasts for all these sources of uncertainty into a single optimization model for robust and sustainable water allocation. Then, it uses this model to analyze the value of constructing additional treatment facilities to reduce future water shortages. The results indicate that the MDRO approach can be very valuable for water managers by providing insights to minimize their risks and help them plan for the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DarrenVan完成签到,获得积分10
2秒前
英俊的铭应助lk采纳,获得10
2秒前
lucky完成签到 ,获得积分10
2秒前
王国科发布了新的文献求助10
3秒前
高高的天亦完成签到 ,获得积分10
3秒前
小D发布了新的文献求助10
4秒前
村上春树的摩的完成签到 ,获得积分10
4秒前
Fox完成签到,获得积分20
5秒前
6秒前
一一完成签到 ,获得积分10
6秒前
7秒前
ccm应助科研通管家采纳,获得10
8秒前
Bio应助科研通管家采纳,获得150
8秒前
无花果应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
9秒前
ccm应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
若ruofeng应助科研通管家采纳,获得20
9秒前
dew应助科研通管家采纳,获得10
9秒前
9秒前
若ruofeng应助科研通管家采纳,获得20
9秒前
馆长应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
若ruofeng应助科研通管家采纳,获得20
9秒前
若ruofeng应助科研通管家采纳,获得20
9秒前
若ruofeng应助科研通管家采纳,获得20
9秒前
9秒前
若ruofeng应助科研通管家采纳,获得20
9秒前
若ruofeng应助科研通管家采纳,获得20
9秒前
若ruofeng应助科研通管家采纳,获得20
9秒前
今后应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
情怀应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514