A multistage distributionally robust optimization approach to water allocation under climate uncertainty

模棱两可 数学优化 稳健优化 计算机科学 水资源 数学 生态学 生物 程序设计语言
作者
Jangho Park,Güzi̇n Bayraksan
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:306 (2): 849-871 被引量:9
标识
DOI:10.1016/j.ejor.2022.06.049
摘要

This paper investigates a Multistage Distributionally Robust Optimization (MDRO) approach to water allocation under climate uncertainty. The MDRO is formed by creating sets of conditional distributions (called conditional ambiguity sets) on a finite scenario tree. The distributions in the conditional ambiguity sets remain close to a nominal conditional distribution according a ϕ-divergence (e.g., Kullback-Leibler divergence, Hellinger distance, Burg entropy, etc.). The paper discusses a decomposition algorithm to solve the resulting MDRO with ϕ-divergences, which uses the dual formulation and solves only linear subproblems instead of convex ones. Some properties of the algorithm such as generating feasible policies and valid upper/lower bounds are established. The paper then applies the modeling and solution techniques to allocate water in a rapidly-developing area of Tucson, Arizona. Tucson, like many arid and semi-arid regions around the world, faces considerable uncertainty in its ability to provide water for its citizens in the future. The primary sources of uncertainty in the Tucson region include (1) unpredictable population growth, (2) the availability of water from the Colorado River, and (3) the effects of climate variability on water consumption. This paper integrates forecasts for all these sources of uncertainty into a single optimization model for robust and sustainable water allocation. Then, it uses this model to analyze the value of constructing additional treatment facilities to reduce future water shortages. The results indicate that the MDRO approach can be very valuable for water managers by providing insights to minimize their risks and help them plan for the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老中医EaSy完成签到,获得积分10
刚刚
停停走走发布了新的文献求助10
1秒前
1秒前
Vaibhav给Vaibhav的求助进行了留言
1秒前
小小康康发布了新的文献求助10
2秒前
cat发布了新的文献求助10
2秒前
keyanniniz发布了新的文献求助10
2秒前
3秒前
搞怪的凡梦完成签到,获得积分10
3秒前
吴彦祖发布了新的文献求助10
3秒前
3秒前
ding应助小材不菜采纳,获得10
5秒前
陈永伟发布了新的文献求助10
5秒前
大个应助停停走走采纳,获得10
5秒前
Ava应助负责冰海采纳,获得10
6秒前
7秒前
务实大船发布了新的文献求助10
8秒前
gcc发布了新的文献求助10
9秒前
害羞的聪健完成签到,获得积分10
9秒前
只想睡大觉完成签到,获得积分10
10秒前
10秒前
nini完成签到,获得积分10
11秒前
小马甲应助吴彦祖采纳,获得10
11秒前
12秒前
研友_Z14Yln应助咖飞采纳,获得10
13秒前
14秒前
XIEMIN发布了新的文献求助10
15秒前
Rita发布了新的文献求助10
16秒前
16秒前
16秒前
洪武发布了新的文献求助10
17秒前
keyanniniz完成签到,获得积分10
18秒前
ysssbq完成签到,获得积分10
18秒前
毛豆应助忐忑的水蓉采纳,获得10
19秒前
哈哈哈哈哈完成签到,获得积分10
19秒前
乐乐应助PrayOne采纳,获得10
20秒前
负责冰海发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459176
求助须知:如何正确求助?哪些是违规求助? 3053746
关于积分的说明 9038127
捐赠科研通 2743025
什么是DOI,文献DOI怎么找? 1504631
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663