A multistage distributionally robust optimization approach to water allocation under climate uncertainty

模棱两可 数学优化 稳健优化 计算机科学 水资源 数学 生态学 生物 程序设计语言
作者
Jangho Park,Güzi̇n Bayraksan
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:306 (2): 849-871 被引量:9
标识
DOI:10.1016/j.ejor.2022.06.049
摘要

This paper investigates a Multistage Distributionally Robust Optimization (MDRO) approach to water allocation under climate uncertainty. The MDRO is formed by creating sets of conditional distributions (called conditional ambiguity sets) on a finite scenario tree. The distributions in the conditional ambiguity sets remain close to a nominal conditional distribution according a ϕ-divergence (e.g., Kullback-Leibler divergence, Hellinger distance, Burg entropy, etc.). The paper discusses a decomposition algorithm to solve the resulting MDRO with ϕ-divergences, which uses the dual formulation and solves only linear subproblems instead of convex ones. Some properties of the algorithm such as generating feasible policies and valid upper/lower bounds are established. The paper then applies the modeling and solution techniques to allocate water in a rapidly-developing area of Tucson, Arizona. Tucson, like many arid and semi-arid regions around the world, faces considerable uncertainty in its ability to provide water for its citizens in the future. The primary sources of uncertainty in the Tucson region include (1) unpredictable population growth, (2) the availability of water from the Colorado River, and (3) the effects of climate variability on water consumption. This paper integrates forecasts for all these sources of uncertainty into a single optimization model for robust and sustainable water allocation. Then, it uses this model to analyze the value of constructing additional treatment facilities to reduce future water shortages. The results indicate that the MDRO approach can be very valuable for water managers by providing insights to minimize their risks and help them plan for the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宫阙完成签到,获得积分10
1秒前
2秒前
2秒前
gqz发布了新的文献求助10
3秒前
沈华炜完成签到,获得积分10
4秒前
4秒前
优美橘子发布了新的文献求助10
5秒前
5秒前
WJF发布了新的文献求助10
5秒前
6秒前
赘婿应助伶俐盼海采纳,获得10
7秒前
小医森完成签到 ,获得积分10
7秒前
共享精神应助无限的绮南采纳,获得10
8秒前
gloval发布了新的文献求助10
9秒前
mmyhn应助科研通管家采纳,获得20
10秒前
orixero应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得30
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
mmyhn应助科研通管家采纳,获得20
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得100
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
mmyhn应助科研通管家采纳,获得20
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
11秒前
无花果应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
12秒前
大模型应助洋葱冲冲冲采纳,获得10
12秒前
13秒前
深情安青应助嘀嘀嘀采纳,获得10
13秒前
所所应助哆发文章啦采纳,获得10
14秒前
拾叁应助能干的明轩采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
宇航发布了新的文献求助10
14秒前
BowieHuang应助凤梨罐头采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497