Learning Edge-Preserved Image Stitching from Large-Baseline Deep Homography

图像拼接 单应性 基线(sea) 人工智能 计算机视觉 GSM演进的增强数据速率 计算机科学 图像(数学) 数学 地质学 统计 射影空间 海洋学 投射试验
作者
Lang Nie,Chunyu Lin,Kang Liao,Yao Zhao
出处
期刊:Cornell University - arXiv 被引量:18
标识
DOI:10.48550/arxiv.2012.06194
摘要

Image stitching is a classical and crucial technique in computer vision, which aims to generate the image with a wide field of view. The traditional methods heavily depend on the feature detection and require that scene features be dense and evenly distributed in the image, leading to varying ghosting effects and poor robustness. Learning methods usually suffer from fixed view and input size limitations, showing a lack of generalization ability on other real datasets. In this paper, we propose an image stitching learning framework, which consists of a large-baseline deep homography module and an edge-preserved deformation module. First, we propose a large-baseline deep homography module to estimate the accurate projective transformation between the reference image and the target image in different scales of features. After that, an edge-preserved deformation module is designed to learn the deformation rules of image stitching from edge to content, eliminating the ghosting effects as much as possible. In particular, the proposed learning framework can stitch images of arbitrary views and input sizes, thus contribute to a supervised deep image stitching method with excellent generalization capability in other real images. Experimental results demonstrate that our homography module significantly outperforms the existing deep homography methods in the large baseline scenes. In image stitching, our method is superior to the existing learning method and shows competitive performance with state-of-the-art traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪发布了新的文献求助10
1秒前
单薄白薇发布了新的文献求助10
1秒前
豆子完成签到,获得积分10
2秒前
通~发布了新的文献求助10
3秒前
橘子哥完成签到,获得积分10
3秒前
mnm发布了新的文献求助10
4秒前
柔弱凡松发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
SHDeathlock发布了新的文献求助50
5秒前
乐乐应助hu970采纳,获得10
5秒前
单薄白薇完成签到,获得积分10
7秒前
陈杰发布了新的文献求助10
7秒前
7秒前
7秒前
小张张发布了新的文献求助10
7秒前
乐乐应助YAN采纳,获得10
8秒前
迷惘墨香完成签到 ,获得积分10
9秒前
9秒前
Cynthia发布了新的文献求助30
9秒前
共享精神应助shenyanlei采纳,获得10
10秒前
wwww发布了新的文献求助10
10秒前
蔡菜菜完成签到,获得积分10
11秒前
852应助小余采纳,获得10
11秒前
饱满秋完成签到,获得积分10
12秒前
夜白发布了新的文献求助20
12秒前
搜集达人应助明月清风采纳,获得10
12秒前
希夷发布了新的文献求助10
13秒前
13秒前
爆米花应助通~采纳,获得10
13秒前
苏靖完成签到,获得积分10
13秒前
luoyutian发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
科研通AI5应助猪猪采纳,获得10
14秒前
14秒前
海绵体宝宝应助an采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762