Learning Edge-Preserved Image Stitching from Large-Baseline Deep Homography

图像拼接 单应性 基线(sea) 人工智能 计算机视觉 GSM演进的增强数据速率 计算机科学 图像(数学) 数学 地质学 统计 投射试验 射影空间 海洋学
作者
Lang Nie,Chunyu Lin,Kang Liao,Yao Zhao
出处
期刊:Cornell University - arXiv 被引量:18
标识
DOI:10.48550/arxiv.2012.06194
摘要

Image stitching is a classical and crucial technique in computer vision, which aims to generate the image with a wide field of view. The traditional methods heavily depend on the feature detection and require that scene features be dense and evenly distributed in the image, leading to varying ghosting effects and poor robustness. Learning methods usually suffer from fixed view and input size limitations, showing a lack of generalization ability on other real datasets. In this paper, we propose an image stitching learning framework, which consists of a large-baseline deep homography module and an edge-preserved deformation module. First, we propose a large-baseline deep homography module to estimate the accurate projective transformation between the reference image and the target image in different scales of features. After that, an edge-preserved deformation module is designed to learn the deformation rules of image stitching from edge to content, eliminating the ghosting effects as much as possible. In particular, the proposed learning framework can stitch images of arbitrary views and input sizes, thus contribute to a supervised deep image stitching method with excellent generalization capability in other real images. Experimental results demonstrate that our homography module significantly outperforms the existing deep homography methods in the large baseline scenes. In image stitching, our method is superior to the existing learning method and shows competitive performance with state-of-the-art traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
马不停蹄完成签到,获得积分10
2秒前
听话的豆芽完成签到,获得积分10
2秒前
2秒前
大模型应助keyanyan采纳,获得10
3秒前
科研通AI5应助亲亲紫荆采纳,获得30
3秒前
司空豁应助宇小姐采纳,获得10
4秒前
4秒前
4秒前
庆幸发布了新的文献求助10
5秒前
YF_1987发布了新的文献求助10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
赘婿应助愤怒的梦柏采纳,获得10
7秒前
领导范儿应助KD357采纳,获得10
7秒前
嘻嘻嘻发布了新的文献求助10
7秒前
7秒前
8秒前
文刀发布了新的文献求助10
8秒前
lll发布了新的文献求助20
8秒前
zhe完成签到 ,获得积分10
8秒前
陈惠卿88完成签到,获得积分10
9秒前
共享精神应助木木三采纳,获得10
9秒前
9秒前
考博上岸26完成签到 ,获得积分10
9秒前
华仔应助xunoverflow采纳,获得10
10秒前
11秒前
FeLaN发布了新的文献求助10
11秒前
bkagyin应助庆幸采纳,获得10
11秒前
李雩完成签到 ,获得积分10
11秒前
12秒前
angelalxj关注了科研通微信公众号
12秒前
12秒前
小栩发布了新的文献求助10
13秒前
blank发布了新的文献求助10
13秒前
和谐念寒发布了新的文献求助10
14秒前
14秒前
tiantian发布了新的文献求助10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343