Learning Edge-Preserved Image Stitching from Large-Baseline Deep Homography

图像拼接 单应性 基线(sea) 人工智能 计算机视觉 GSM演进的增强数据速率 计算机科学 图像(数学) 数学 地质学 统计 投射试验 射影空间 海洋学
作者
Lang Nie,Chunyu Lin,Kang Liao,Yao Zhao
出处
期刊:Cornell University - arXiv 被引量:18
标识
DOI:10.48550/arxiv.2012.06194
摘要

Image stitching is a classical and crucial technique in computer vision, which aims to generate the image with a wide field of view. The traditional methods heavily depend on the feature detection and require that scene features be dense and evenly distributed in the image, leading to varying ghosting effects and poor robustness. Learning methods usually suffer from fixed view and input size limitations, showing a lack of generalization ability on other real datasets. In this paper, we propose an image stitching learning framework, which consists of a large-baseline deep homography module and an edge-preserved deformation module. First, we propose a large-baseline deep homography module to estimate the accurate projective transformation between the reference image and the target image in different scales of features. After that, an edge-preserved deformation module is designed to learn the deformation rules of image stitching from edge to content, eliminating the ghosting effects as much as possible. In particular, the proposed learning framework can stitch images of arbitrary views and input sizes, thus contribute to a supervised deep image stitching method with excellent generalization capability in other real images. Experimental results demonstrate that our homography module significantly outperforms the existing deep homography methods in the large baseline scenes. In image stitching, our method is superior to the existing learning method and shows competitive performance with state-of-the-art traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
¥#¥-11完成签到,获得积分10
刚刚
归尘发布了新的文献求助10
1秒前
1秒前
和谐续发布了新的文献求助10
1秒前
情怀应助ZSXL采纳,获得10
1秒前
OOOorange发布了新的文献求助10
1秒前
酷波er应助杨杨采纳,获得10
2秒前
小肥鱼发布了新的文献求助30
3秒前
15发布了新的文献求助10
4秒前
4秒前
4秒前
ZT发布了新的文献求助10
4秒前
酒吧舞男茜茜妈完成签到,获得积分10
5秒前
吉毛毛完成签到,获得积分20
5秒前
Ava应助guguhuhu采纳,获得10
5秒前
5秒前
超帅沂发布了新的文献求助10
5秒前
格格发布了新的文献求助10
6秒前
舌T完成签到,获得积分10
6秒前
6秒前
zzz发布了新的文献求助10
7秒前
明亮大叔发布了新的文献求助10
7秒前
舒服的莞完成签到,获得积分20
7秒前
7秒前
7秒前
wangbq完成签到 ,获得积分10
8秒前
SYLH应助直率闭月采纳,获得10
8秒前
高瞻发布了新的文献求助10
8秒前
悲凉的诺言完成签到,获得积分10
8秒前
小蘑菇应助Merry采纳,获得10
8秒前
光亮的曼香完成签到,获得积分10
9秒前
ran发布了新的文献求助10
9秒前
gong完成签到,获得积分10
10秒前
10秒前
11秒前
小巴德完成签到,获得积分10
11秒前
11秒前
11秒前
wanci应助舒心的大白采纳,获得10
11秒前
lei完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954042
求助须知:如何正确求助?哪些是违规求助? 3500003
关于积分的说明 11097832
捐赠科研通 3230521
什么是DOI,文献DOI怎么找? 1785972
邀请新用户注册赠送积分活动 869759
科研通“疑难数据库(出版商)”最低求助积分说明 801583