A deep learning approach to automate high-resolution blood vessel reconstruction on computerised tomography images with or without the use of contrast agents

医学 分割 放射科 人工智能 腹主动脉瘤 数据集 管腔(解剖学) 感兴趣区域 动脉瘤 外科 计算机科学
作者
Anirudh Chandrashekar,Ashok Handa,Natesh Shivakumar,Pierfrancesco Lapolla,Vicente Grau,Regent Lee
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:41 (Supplement_2) 被引量:1
标识
DOI:10.1093/ehjci/ehaa946.0154
摘要

Abstract Background Existing methods to reconstruct vascular structures from a computed tomography (CT) angiogram rely on injection of intravenous contrast to enhance the radio-density within the vessel lumen. Pathological changes present within the blood lumen, vessel wall or a combination of both prevent accurate 3D reconstruction. In the example of aortic aneurysmal (AAA) disease, a blood clot or thrombus adherent to the aortic wall within the expanding aneurysmal sac is present in 95% of cases. These deformations prevent the automatic extraction of vital clinically relevant information by current methods. Objectives In this study, we utilised deep learning segmentation methods to establish a high-throughput and automated segmentation pipeline for pathological blood vessels (ex. Aortic Aneurysm) in CT images acquired with or without the use of a contrast agent. Methods Twenty-six patients with paired non-contrast and contrast-enhanced CT images were randomly selected from an ethically-approved ongoing study (Ethics Ref 13/SC/0250), manually annotated and used for model training and evaluation (13/13). Data augmentation methods were implemented to diversify the training data set in a ratio of 10:1. We utilised a 3D U-Net with attention gating for both the aortic region-of-interest (ROI) detection and segmentation tasks. Trained architectures were evaluated using the DICE similarity score. Results Inter- and Intra- observer analysis supports the accuracy of the manual segmentations used for model training (intra-class correlation coefficient, “ICC” = 0.995 and 1.00, respective. P<0.001 for both). The performance of our Attention-based U-Net (DICE score: 94.8±0.5%) in extracting both the inner lumen and the outer wall of the aortic aneurysm from CT angiograms (CTA) was compared against a generic 3-D U-Net (DICE score: 89.5±0.6%) and displayed superior results (p<0.01). Fig 1A depicts the implementation of this network architecture within the aortic segmentation pipeline (automated ROI detection and aortic segmentation). This pipeline has allowed accurate and efficient extraction of the entire aortic volume from both contrast-enhanced CTA (DICE score: 95.3±0.6%) and non-contrast CT (DICE score: 93.2±0.7%) images. Fig 1B illustrates the model output alongside the labelled ground truth segmentation for the pathological aneurysmal region; only minor differences are visually discernible (coloured boxes). Conclusion We developed a novel automated pipeline for high resolution reconstruction of blood vessels using deep learning approaches. This pipeline enables automatic extraction of morphologic features of blood vessels and can be applied for research and potentially for clinical use. Automated Segmentation of Blood Vessels Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): University of Oxford Medical Research Fund, John Fell Fund

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐为上完成签到,获得积分10
刚刚
刻苦千愁完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
自由的沛山完成签到,获得积分10
2秒前
eagle14835完成签到,获得积分10
3秒前
小黄油完成签到,获得积分10
3秒前
lalala应助无奈书包采纳,获得10
4秒前
自然的芹菜完成签到,获得积分10
4秒前
卫绯完成签到 ,获得积分10
4秒前
爱吃棒棒糖的猫完成签到,获得积分10
5秒前
Lucas应助fqh采纳,获得10
5秒前
可爱的函函应助fqh采纳,获得10
5秒前
MAIDANG完成签到,获得积分10
5秒前
5秒前
常毓璇完成签到,获得积分10
5秒前
专注完成签到,获得积分10
6秒前
ffw1完成签到,获得积分10
6秒前
沉静的八宝粥完成签到,获得积分10
7秒前
略略完成签到,获得积分10
7秒前
JiangSir发布了新的文献求助10
7秒前
7秒前
笑点低的如凡完成签到,获得积分10
7秒前
camellia完成签到 ,获得积分10
7秒前
7秒前
萌娜梨裟完成签到,获得积分10
8秒前
925完成签到,获得积分10
8秒前
KK完成签到,获得积分10
9秒前
复杂尔蓝完成签到 ,获得积分10
9秒前
消消消消气完成签到 ,获得积分10
10秒前
大个应助xqwwqx采纳,获得10
10秒前
二重音完成签到,获得积分10
11秒前
夜倾心完成签到,获得积分10
11秒前
Ava应助TiAmo采纳,获得10
12秒前
12秒前
12秒前
111完成签到,获得积分10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167375
求助须知:如何正确求助?哪些是违规求助? 2818893
关于积分的说明 7923236
捐赠科研通 2478710
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443