Machine Learning Models of Antibody–Excipient Preferential Interactions for Use in Computational Formulation Design

赋形剂 计算机科学 人工智能 粘度 理论(学习稳定性) 生物系统 机器学习 化学 色谱法 物理 热力学 生物
作者
Theresa K. Cloutier,Chaitanya Sudrik,Neil Mody,Hasige A. Sathish,Bernhardt L. Trout
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:17 (9): 3589-3599 被引量:19
标识
DOI:10.1021/acs.molpharmaceut.0c00629
摘要

Preferential interactions of formulation excipients govern their impact on the stability properties of proteins in solution. The ability to predict these interactions without the need to perform experiments would enable formulation design to begin early in the development of a new antibody therapeutic. With that in mind, we developed a feature set to numerically describe local regions of an antibody's surface for use in machine learning applications. Then, we used these features to train machine learning models for local antibody–excipient preferential interactions for the excipients sorbitol, sucrose, trehalose, proline, arginine·HCl, and NaCl. Our models had accuracies of up to about 85%. We also used linear (elastic net) models to quantify the contribution of antibody surface features to the preferential interaction coefficients, finding that the carbohydrates and proline tend to have similar important features, while the interactions of arginine·HCl and NaCl are governed by charge features. We present several case studies demonstrating how these machine learning models could be used to predict experimental aggregation and viscosity behavior in solution. Finally, we propose an approach to computational formulation design wherein a panel of excipients may be considered while designing an antibody sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ziyue采纳,获得10
刚刚
开放沛柔完成签到 ,获得积分10
刚刚
大胆夜山发布了新的文献求助10
刚刚
wan完成签到,获得积分10
刚刚
如你所liao发布了新的文献求助10
1秒前
FashionBoy应助jaya采纳,获得10
1秒前
今天学习了吗完成签到,获得积分10
1秒前
1秒前
jie酱拌面给楚舜华的求助进行了留言
2秒前
希望天下0贩的0应助香蕉采纳,获得10
3秒前
科研通AI6应助鲤鱼一手采纳,获得10
3秒前
3秒前
3秒前
隐形曼青应助何欢采纳,获得10
4秒前
在11路旁的蓝莓关注了科研通微信公众号
4秒前
YYJJHH发布了新的文献求助10
5秒前
无情孤菱完成签到,获得积分10
5秒前
5秒前
小蘑菇应助整齐的裙子采纳,获得10
5秒前
生动梦松应助小鑫采纳,获得100
5秒前
ZZDL完成签到,获得积分10
6秒前
核桃发布了新的文献求助30
6秒前
WJ完成签到,获得积分10
7秒前
Neuro_dan完成签到,获得积分0
7秒前
8秒前
科研通AI5应助正直的半梅采纳,获得30
8秒前
8秒前
8秒前
wjx发布了新的文献求助10
9秒前
9秒前
修仙中应助mof采纳,获得10
9秒前
修仙中应助mof采纳,获得10
9秒前
罗亚亚完成签到,获得积分10
9秒前
9秒前
Sylvia完成签到,获得积分10
9秒前
猪猪hero应助积极的雪莲采纳,获得10
9秒前
caizx完成签到,获得积分10
10秒前
PP应助w_l2025采纳,获得10
10秒前
隐形曼青应助min采纳,获得10
10秒前
聪慧小霜应助明明采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572947
求助须知:如何正确求助?哪些是违规求助? 3993556
关于积分的说明 12362626
捐赠科研通 3666597
什么是DOI,文献DOI怎么找? 2020884
邀请新用户注册赠送积分活动 1055071
科研通“疑难数据库(出版商)”最低求助积分说明 942490