Machine Learning Models of Antibody–Excipient Preferential Interactions for Use in Computational Formulation Design

赋形剂 计算机科学 人工智能 粘度 理论(学习稳定性) 生物系统 机器学习 化学 色谱法 物理 热力学 生物
作者
Theresa K. Cloutier,Chaitanya Sudrik,Neil Mody,Hasige A. Sathish,Bernhardt L. Trout
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:17 (9): 3589-3599 被引量:31
标识
DOI:10.1021/acs.molpharmaceut.0c00629
摘要

Preferential interactions of formulation excipients govern their impact on the stability properties of proteins in solution. The ability to predict these interactions without the need to perform experiments would enable formulation design to begin early in the development of a new antibody therapeutic. With that in mind, we developed a feature set to numerically describe local regions of an antibody's surface for use in machine learning applications. Then, we used these features to train machine learning models for local antibody-excipient preferential interactions for the excipients sorbitol, sucrose, trehalose, proline, arginine·HCl, and NaCl. Our models had accuracies of up to about 85%. We also used linear (elastic net) models to quantify the contribution of antibody surface features to the preferential interaction coefficients, finding that the carbohydrates and proline tend to have similar important features, while the interactions of arginine·HCl and NaCl are governed by charge features. We present several case studies demonstrating how these machine learning models could be used to predict experimental aggregation and viscosity behavior in solution. Finally, we propose an approach to computational formulation design wherein a panel of excipients may be considered while designing an antibody sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Yx采纳,获得10
1秒前
1秒前
2秒前
隐形曼青应助ethan采纳,获得200
2秒前
过时的花卷完成签到,获得积分10
2秒前
3秒前
mumumuzzz发布了新的文献求助30
3秒前
一剑如萧横吹灭关注了科研通微信公众号
3秒前
可爱半凡发布了新的文献求助10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
JHJ发布了新的文献求助10
4秒前
深情安青应助光亮烤鸡采纳,获得10
4秒前
思源应助光亮烤鸡采纳,获得10
4秒前
慕青应助光亮烤鸡采纳,获得10
5秒前
酷波er应助光亮烤鸡采纳,获得10
5秒前
领导范儿应助zhangyida采纳,获得10
5秒前
6秒前
香蕉觅云应助liz采纳,获得50
6秒前
6秒前
傻傻的山灵完成签到,获得积分10
6秒前
6秒前
7秒前
xiaobai发布了新的文献求助10
7秒前
7秒前
Zx_1993应助mario采纳,获得10
7秒前
7秒前
知秋发布了新的文献求助10
8秒前
8秒前
9秒前
林新宇发布了新的文献求助10
10秒前
10秒前
aaaaaawwwww发布了新的文献求助10
11秒前
ZeKaWa应助BBB采纳,获得10
11秒前
科研通AI6应助CBWKEYANTONG123采纳,获得10
11秒前
11秒前
12秒前
充电宝应助善良高山采纳,获得10
12秒前
研友_Y59685完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546309
求助须知:如何正确求助?哪些是违规求助? 4632193
关于积分的说明 14625447
捐赠科研通 4573861
什么是DOI,文献DOI怎么找? 2507851
邀请新用户注册赠送积分活动 1484503
关于科研通互助平台的介绍 1455714