Machine Learning Models of Antibody–Excipient Preferential Interactions for Use in Computational Formulation Design

赋形剂 计算机科学 人工智能 粘度 理论(学习稳定性) 生物系统 机器学习 化学 色谱法 物理 热力学 生物
作者
Theresa K. Cloutier,Chaitanya Sudrik,Neil Mody,Hasige A. Sathish,Bernhardt L. Trout
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:17 (9): 3589-3599 被引量:19
标识
DOI:10.1021/acs.molpharmaceut.0c00629
摘要

Preferential interactions of formulation excipients govern their impact on the stability properties of proteins in solution. The ability to predict these interactions without the need to perform experiments would enable formulation design to begin early in the development of a new antibody therapeutic. With that in mind, we developed a feature set to numerically describe local regions of an antibody's surface for use in machine learning applications. Then, we used these features to train machine learning models for local antibody–excipient preferential interactions for the excipients sorbitol, sucrose, trehalose, proline, arginine·HCl, and NaCl. Our models had accuracies of up to about 85%. We also used linear (elastic net) models to quantify the contribution of antibody surface features to the preferential interaction coefficients, finding that the carbohydrates and proline tend to have similar important features, while the interactions of arginine·HCl and NaCl are governed by charge features. We present several case studies demonstrating how these machine learning models could be used to predict experimental aggregation and viscosity behavior in solution. Finally, we propose an approach to computational formulation design wherein a panel of excipients may be considered while designing an antibody sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
充电宝应助大约在冬季采纳,获得10
3秒前
Hemingwayway发布了新的文献求助10
5秒前
拉长的沛芹完成签到,获得积分10
5秒前
秋秋发布了新的文献求助10
6秒前
6秒前
Ava应助学术不难采纳,获得30
7秒前
李爱国应助情殇采纳,获得10
8秒前
8秒前
10秒前
白瑾完成签到 ,获得积分10
11秒前
Alina1874发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
小肆发布了新的文献求助10
15秒前
16秒前
初心不变发布了新的文献求助10
16秒前
情殇发布了新的文献求助10
19秒前
Maple发布了新的文献求助10
20秒前
21秒前
路茉完成签到,获得积分10
22秒前
文静的麦片完成签到,获得积分10
22秒前
24秒前
26秒前
路茉发布了新的文献求助10
27秒前
初心不变完成签到,获得积分20
27秒前
Xieyusen发布了新的文献求助10
28秒前
30秒前
福娃哇完成签到 ,获得积分10
31秒前
Owen应助猪猪hero采纳,获得10
32秒前
热心市民小红花应助wg言采纳,获得10
33秒前
深情安青应助飞飞采纳,获得10
33秒前
桐桐应助llll采纳,获得10
35秒前
35秒前
vina发布了新的文献求助30
35秒前
wu8577应助Lisisi采纳,获得30
36秒前
36秒前
可爱的函函应助俏皮诺言采纳,获得10
38秒前
半个桃子完成签到,获得积分20
38秒前
40秒前
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824