协方差交集
卡尔曼滤波器
协方差
稳健性(进化)
非线性系统
估计员
协方差矩阵
扩展卡尔曼滤波器
融合
计算机科学
控制理论(社会学)
算法
传感器融合
快速卡尔曼滤波
数学
不变扩展卡尔曼滤波器
数学优化
统计
人工智能
化学
控制(管理)
哲学
物理
基因
量子力学
生物化学
语言学
摘要
Summary This paper is concerned with the distributed fusion estimation problem for multisensor nonlinear systems. Based on the Kalman filtering framework and the spherical cubature rule, a general method for calculating the cross‐covariance matrices between any two local estimators is presented for multisensor nonlinear systems. In the linear unbiased minimum variance sense, based on the cross‐covariance matrices, a distributed fusion cubature Kalman filter weighted by matrices (MW‐CKF) is presented. The proposed MW‐CKF has better accuracy and robustness. An example verifies the effectiveness of the proposed algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI