成核
超分子化学
化学
亚稳态
相变
化学物理
两亲性
相(物质)
化学工程
聚合物
材料科学
纳米技术
分子
有机化学
热力学
共聚物
工程类
物理
作者
Chengqian Yuan,Aviad Levin,Wei Chen,Ruirui Xing,Qianli Zou,Therese W. Herling,Pavan K. Challa,Tuomas P. J. Knowles,Xuehai Yan
标识
DOI:10.1002/anie.201911782
摘要
Abstract The transition of peptides and proteins from the solution phase into fibrillar structures is a general phenomenon encountered in functional and aberrant biology and is increasingly exploited in soft materials science. However, the fundamental molecular events underpinning the early stages of their assembly and subsequent growth have remained challenging to elucidate. Here, we show that liquid–liquid phase separation into solute‐rich and solute‐poor phases is a fundamental step leading to the nucleation of supramolecular nanofibrils from molecular building blocks, including peptides and even amphiphilic amino acids. The solute‐rich liquid droplets act as nucleation sites, allowing the formation of thermodynamically favorable nanofibrils following Ostwald's step rule. The transition from solution to liquid droplets is entropy driven while the transition from liquid droplets to nanofibrils is mediated by enthalpic interactions and characterized by structural reorganization. These findings shed light on how the nucleation barrier toward the formation of solid phases can be lowered through a kinetic mechanism which proceeds through a metastable liquid phase.
科研通智能强力驱动
Strongly Powered by AbleSci AI