Learned large field-of-view imaging with thin-plate optics

计算机科学 视野 光学 图像质量 薄透镜 针孔(光学) 物理 计算机视觉 人工智能 景深 镜头(地质) 图像(数学)
作者
Yifan Peng,Qilin Sun,Xiong Dun,Gordon Wetzstein,Wolfgang Heidrich,Felix Heide
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:38 (6): 1-14 被引量:101
标识
DOI:10.1145/3355089.3356526
摘要

Typical camera optics consist of a system of individual elements that are designed to compensate for the aberrations of a single lens. Recent computational cameras shift some of this correction task from the optics to post-capture processing, reducing the imaging optics to only a few optical elements. However, these systems only achieve reasonable image quality by limiting the field of view (FOV) to a few degrees - effectively ignoring severe off-axis aberrations with blur sizes of multiple hundred pixels. In this paper, we propose a lens design and learned reconstruction architecture that lift this limitation and provide an order of magnitude increase in field of view using only a single thin-plate lens element. Specifically, we design a lens to produce spatially shift-invariant point spread functions, over the full FOV, that are tailored to the proposed reconstruction architecture. We achieve this with a mixture PSF, consisting of a peak and and a low-pass component, which provides residual contrast instead of a small spot size as in traditional lens designs. To perform the reconstruction, we train a deep network on captured data from a display lab setup, eliminating the need for manual acquisition of training data in the field. We assess the proposed method in simulation and experimentally with a prototype camera system. We compare our system against existing single-element designs, including an aspherical lens and a pinhole, and we compare against a complex multielement lens, validating high-quality large field-of-view (i.e. 53°) imaging performance using only a single thin-plate element.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研CY发布了新的文献求助10
刚刚
1秒前
四叶草完成签到,获得积分10
1秒前
萧羽完成签到,获得积分10
1秒前
3秒前
嘟嘟嘟发布了新的文献求助10
3秒前
3秒前
嘴嘴完成签到,获得积分10
3秒前
二二完成签到,获得积分10
4秒前
5秒前
Islay50ppm完成签到,获得积分10
7秒前
bb011发布了新的文献求助10
7秒前
淡定的问丝完成签到,获得积分10
7秒前
7秒前
陶醉大侠完成签到,获得积分10
8秒前
小张发布了新的文献求助10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
M张完成签到,获得积分10
8秒前
思源应助科研通管家采纳,获得10
8秒前
Ll应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得30
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得30
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
冷静小天鹅完成签到,获得积分10
9秒前
zz发布了新的文献求助10
10秒前
敏感初露完成签到,获得积分10
10秒前
小廖发布了新的文献求助10
10秒前
桐桐应助DQ8733采纳,获得10
10秒前
MissXia完成签到,获得积分10
11秒前
答案是Cyndi完成签到,获得积分10
11秒前
11秒前
高高的山兰完成签到 ,获得积分10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134355
求助须知:如何正确求助?哪些是违规求助? 2785254
关于积分的说明 7770963
捐赠科研通 2440904
什么是DOI,文献DOI怎么找? 1297556
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792