情态动词
计算机科学
加权
保险丝(电气)
人工智能
人工神经网络
集合(抽象数据类型)
样品(材料)
萧条(经济学)
机器学习
模式识别(心理学)
工程类
医学
宏观经济学
放射科
经济
电气工程
化学
高分子化学
程序设计语言
色谱法
作者
Shi Yin,Cong Liang,Heyan Ding,Shangfei Wang
标识
DOI:10.1145/3347320.3357696
摘要
We propose a multi-modal method with a hierarchical recurrent neural structure to integrate vision, audio and text features for depression detection. Such a method contains two hierarchies of bidirectional long short term memories to fuse multi-modal features and predict the severity of depression. An adaptive sample weighting mechanism is introduced to adapt to the diversity of training samples. Experiments on the testing set of a depression detection challenge demonstrate the effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI