摘要
The engagement of programmed cell death protein 1 (PD-1; encoded by the PDCD1 gene) receptor expressed on activated T cells and its ligand, programmed death-ligand 1 (PD-L1; encoded by the CD274 gene), is a major co-inhibitory checkpoint signaling that controls T cell activities. Various types of cancers express high levels of PD-L1 and exploit PD-L1/PD-1 signaling to evade T cell immunity. Blocking the PD-L1/PD-1 pathway has consistently shown remarkable anti-tumor effects in patients with advanced cancers and is recognized as the gold standard for developing new immune checkpoint blockade (ICB) and combination therapies. However, the response rates of anti-PD-L1 have been limited in several solid tumors. Therefore, furthering our understanding of the regulatory mechanisms of PD-L1 can bring substantial benefits to patients with cancer by improving the efficacy of current PD-L1/PD-1 blockade or other ICBs. In this review, we provide current knowledge of PD-L1 regulatory mechanisms at the transcriptional, posttranscriptional, post-translational, and extracellular levels, and discuss the implications of these findings in cancer diagnosis and immunotherapy. The engagement of programmed cell death protein 1 (PD-1; encoded by the PDCD1 gene) receptor expressed on activated T cells and its ligand, programmed death-ligand 1 (PD-L1; encoded by the CD274 gene), is a major co-inhibitory checkpoint signaling that controls T cell activities. Various types of cancers express high levels of PD-L1 and exploit PD-L1/PD-1 signaling to evade T cell immunity. Blocking the PD-L1/PD-1 pathway has consistently shown remarkable anti-tumor effects in patients with advanced cancers and is recognized as the gold standard for developing new immune checkpoint blockade (ICB) and combination therapies. However, the response rates of anti-PD-L1 have been limited in several solid tumors. Therefore, furthering our understanding of the regulatory mechanisms of PD-L1 can bring substantial benefits to patients with cancer by improving the efficacy of current PD-L1/PD-1 blockade or other ICBs. In this review, we provide current knowledge of PD-L1 regulatory mechanisms at the transcriptional, posttranscriptional, post-translational, and extracellular levels, and discuss the implications of these findings in cancer diagnosis and immunotherapy. T cell immunity is critical for maintaining our body's homeostasis by selectively recognizing and eliminating pathogens and abnormal cells, including cancer cells. However, hyperactivation of uncontrolled T cells may also attack normal cells (Zhang and Bevan, 2011Zhang N. Bevan M.J. CD8(+) T cells: foot soldiers of the immune system.Immunity. 2011; 35: 161-168Abstract Full Text Full Text PDF PubMed Scopus (580) Google Scholar). To prevent such autoimmune reactions, co-inhibitory immune checkpoint proteins, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed death-1 (PD-1; encoded by the PDCD1 gene), and programmed death-ligand 1 (PD-L1; encoded by the CD274 gene), maintain an intricate regulation of T cell activities in normal physiological conditions (Francisco et al., 2010Francisco L.M. Sage P.T. Sharpe A.H. The PD-1 pathway in tolerance and autoimmunity.Immunol. Rev. 2010; 236: 219-242Crossref PubMed Scopus (1549) Google Scholar). In many human cancers, including renal cell carcinoma (RCC), breast cancer, colorectal cancer, gastric cancer, non-small cell lung cancer (NSCLC), papillary thyroid cancer, and testicular cancer (Thompson et al., 2004Thompson R.H. Gillett M.D. Cheville J.C. Lohse C.M. Dong H. Webster W.S. Krejci K.G. Lobo J.R. Sengupta S. Chen L. et al.Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target.Proc. Natl. Acad. Sci. USA. 2004; 101: 17174-17179Crossref PubMed Scopus (694) Google Scholar), high PD-L1 expression is detected and associated with poor prognosis (Ohaegbulam et al., 2015Ohaegbulam K.C. Assal A. Lazar-Molnar E. Yao Y. Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway.Trends Mol. Med. 2015; 21: 24-33Abstract Full Text Full Text PDF PubMed Scopus (495) Google Scholar). Indeed, the binding between PD-L1 on cancer cells with PD-1 on tumor-infiltrating T cells (TILs) activates Src homology region 2 domain-containing phosphatases (SPH2s), leading to suppression of the T cell receptor (TCR) pathway and inhibition of T cell activity. Moreover, interruption of immune surveillance promotes cancer cell survival by exploiting PD-L1/PD-1 signaling (Schildberg et al., 2016Schildberg F.A. Klein S.R. Freeman G.J. Sharpe A.H. Coinhibitory pathways in the B7-CD28 ligand-receptor family.Immunity. 2016; 44: 955-972Abstract Full Text Full Text PDF PubMed Scopus (362) Google Scholar). In addition to cancer cells, multiple types of host cells in the tumor microenvironment (TME) and lymph nodes, including dendritic cells, macrophages, fibroblasts, and T cells, also express PD-L1 to reduce anti-tumor immunity (Curiel et al., 2003Curiel T.J. Wei S. Dong H. Alvarez X. Cheng P. Mottram P. Krzysiek R. Knutson K.L. Daniel B. Zimmermann M.C. et al.Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity.Nat. Med. 2003; 9: 562-567Crossref PubMed Scopus (1041) Google Scholar, Zou et al., 2016Zou W. Wolchok J.D. Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations.Sci. Transl. Med. 2016; 8: 328rv4Crossref PubMed Scopus (1473) Google Scholar). Recently, Tang et al. reported that PD-L1 is upregulated by interferon γ (IFN-γ) on antigen-presenting cells (APCs) in the TME and lymph nodes to inhibit T cell activation (Tang et al., 2018Tang H. Liang Y. Anders R.A. Taube J.M. Qiu X. Mulgaonkar A. Liu X. Harrington S.M. Guo J. Xin Y. et al.PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression.J. Clin. Invest. 2018; 128: 580-588Crossref PubMed Scopus (305) Google Scholar). Meanwhile, Lin et al. also reported that the efficacy of PD-1 antibody treatment alone or in combination with CTLA-4 antibody is correlated with the expression of PD-L1 on dendritic cells and macrophages in the tumor region and tumor-draining lymph nodes of patients with ovarian cancer or melanoma (Lin et al., 2018Lin H. Wei S. Hurt E.M. Green M.D. Zhao L. Vatan L. Szeliga W. Herbst R. Harms P.W. Fecher L.A. et al.Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression.J. Clin. Invest. 2018; 128: 805-815Crossref PubMed Scopus (313) Google Scholar). Based on the above findings, therapeutic antibodies against PD-L1 (e.g., atezolizumab, avelumab, and durvalumab) and PD-1 (e.g., nivolumab, pembrolizumab, and cemiplimab) were developed and have demonstrated promising results in clinical trials for various types of cancer (Gong et al., 2018Gong J. Chehrazi-Raffle A. Reddi S. Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations.J. Immunother. Cancer. 2018; 6: 8Crossref PubMed Scopus (724) Google Scholar). Specifically, blocking the PD-L1/PD-1 signaling axis by antibody reactivates the exhausted immune cells in the TME and eliminates cancer cells. This therapeutic strategy normalizes the imbalanced anti-tumor immunity and has achieved a 10%–40% response in the clinic (Zou et al., 2016Zou W. Wolchok J.D. Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations.Sci. Transl. Med. 2016; 8: 328rv4Crossref PubMed Scopus (1473) Google Scholar). Currently, PD-L1 and PD-1 antibodies are approved by the U.S. Food and Drug Administration (FDA) for the treatment of multiple cancer types, including melanoma, small cell lung cancer (SCLC), NSCLC, RCC, head and neck squamous cell carcinomas (HNSCCs), classical Hodgkin lymphoma (cHL), and Merkel cell carcinoma. Based on the promising therapeutic outcomes from anti-PD-1/PD-L1 therapy, PD-L1 has become a key protein in immuno-oncology, and its functions and regulatory mechanisms are being intensively studied. In addition, the expression of PD-L1 is intricately regulated by various processes, such as gene transcription, post-transcriptional and post-translational modifications (PTMs), and exosomal transport. Therefore, it is important to broaden our understanding of the regulation of PD-L1 expression to improve the efficacy of current immune checkpoint blockade (ICB) and advance cancer immunotherapy. Aberrant signaling pathways and genomic mutations drive the formation of tumors. During cell transformation and tumorigenesis, upregulation of PD-L1 by these oncogenic pathways or gene mutations attenuates the activity of immune cells, allowing cancer cells to escape immunosurveillance and enhance their survival and metastatic potential. The TME provides a further enhanced niche for cancer immune escape by augmenting PD-L1 expression induced by pro-inflammatory cytokines, such as IFNγ, tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) (Chan et al., 2019Chan L.C. Li C.W. Xia W. Hsu J.M. Lee H.H. Cha J.H. Wang H.L. Yang W.H. Yen E.Y. Chang W.C. et al.IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion.J. Clin. Invest. 2019; 129: 3324-3338Crossref PubMed Scopus (146) Google Scholar, Dong et al., 2002Dong H. Strome S.E. Salomao D.R. Tamura H. Hirano F. Flies D.B. Roche P.C. Lu J. Zhu G. Tamada K. et al.Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion.Nat. Med. 2002; 8: 793-800Crossref PubMed Scopus (0) Google Scholar, Lim et al., 2016Lim S.O. Li C.W. Xia W. Cha J.H. Chan L.C. Wu Y. Chang S.S. Lin W.C. Hsu J.M. Hsu Y.H. et al.Deubiquitination and Stabilization of PD-L1 by CSN5.Cancer Cell. 2016; 30: 925-939Abstract Full Text Full Text PDF PubMed Scopus (403) Google Scholar), and attenuating activation of immune cells, including TCR on T cells and the "don't eat me" signaling on macrophages (Gordon et al., 2017Gordon S.R. Maute R.L. Dulken B.W. Hutter G. George B.M. McCracken M.N. Gupta R. Tsai J.M. Sinha R. Corey D. et al.PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity.Nature. 2017; 545: 495-499Crossref PubMed Scopus (1105) Google Scholar, Zou et al., 2016Zou W. Wolchok J.D. Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations.Sci. Transl. Med. 2016; 8: 328rv4Crossref PubMed Scopus (1473) Google Scholar). Hijacking these signals, which is induced by immune cell cytokines and enhanced immune checkpoint expression, contributes to the adaptive resistance pathway (inducible expression) in tumor cells (Topalian et al., 2015Topalian S.L. Drake C.G. Pardoll D.M. Immune checkpoint blockade: a common denominator approach to cancer therapy.Cancer Cell. 2015; 27: 450-461Abstract Full Text Full Text PDF PubMed Scopus (2644) Google Scholar) (Table 1). Below, we discuss the genomic alterations, and transcriptional and post-transcriptional mechanisms of PD-L1 in cancer cells and TME as well as their potential as biomarkers to improve and enhance the response rate of PD-L1/PD-1 therapy (Figure 1).Table 1Regulatory Mechanism of PD-L1 in the TMEStage of RegulationKey Regulator/RegionRegulatory MechanismPD-L1 LevelPotential/Proposed Therapeutic StrategiesReferencesGenomic alteration/rearrangements9p24.1PD-L1 amplifications and translocations in genomeUpCancer Genome Atlas Research Network, 2014Cancer Genome Atlas Research NetworkComprehensive molecular characterization of gastric adenocarcinoma.Nature. 2014; 513: 202-209Crossref PubMed Scopus (3948) Google Scholar, Green et al., 2010Green M.R. Monti S. Rodig S.J. Juszczynski P. Currie T. O'Donnell E. Chapuy B. Takeyama K. Neuberg D. Golub T.R. et al.Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma.Blood. 2010; 116: 3268-3277Crossref PubMed Scopus (936) Google Scholar, Ikeda et al., 2016Ikeda S. Okamoto T. Okano S. Umemoto Y. Tagawa T. Morodomi Y. Kohno M. Shimamatsu S. Kitahara H. Suzuki Y. et al.PD-L1 is upregulated by simultaneous amplification of the PD-L1 and JAK2 genes in non-small cell lung cancer.J. Thorac. Oncol. 2016; 11: 62-71Abstract Full Text Full Text PDF PubMed Scopus (118) Google Scholar, Roemer et al., 2016Roemer M.G. Advani R.H. Ligon A.H. Natkunam Y. Redd R.A. Homer H. Connelly C.F. Sun H.H. Daadi S.E. Freeman G.J. et al.PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome.J. Clin. Oncol. 2016; 34: 2690-2697Crossref PubMed Scopus (516) Google Scholar, Twa et al., 2014Twa D.D. Chan F.C. Ben-Neriah S. Woolcock B.W. Mottok A. Tan K.L. Slack G.W. Gunawardana J. Lim R.S. McPherson A.W. et al.Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma.Blood. 2014; 123: 2062-2065Crossref PubMed Scopus (222) Google ScholarGenomic alterationDSBDSB activates STAT signaling through ATM/ATR/Chk1 kinases, resulting in upregulation of PD-L1 levelsUpCombining radiation therapy and PD-1/PD-L1 blockadeSato et al., 2017Sato H. Niimi A. Yasuhara T. Permata T.B.M. Hagiwara Y. Isono M. Nuryadi E. Sekine R. Oike T. Kakoti S. et al.DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells.Nat. Commun. 2017; 8: 1751Crossref PubMed Scopus (361) Google Scholar, Sun et al., 2018bSun L.L. Yang R.Y. Li C.W. Chen M.K. Shao B. Hsu J.M. Chan L.C. Yang Y. Hsu J.L. Lai Y.J. Hung M.C. Inhibition of ATR downregulates PD-L1 and sensitizes tumor cells to T cell-mediated killing.Am. J. Cancer Res. 2018; 8: 1307-1316PubMed Google ScholarGenomic alteration3′ UTR of PD-L1Disruption of the 3′ UTR of PD-L1UpKataoka et al., 2016Kataoka K. Shiraishi Y. Takeda Y. Sakata S. Matsumoto M. Nagano S. Maeda T. Nagata Y. Kitanaka A. Mizuno S. et al.Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers.Nature. 2016; 534: 402-406Crossref PubMed Scopus (428) Google ScholarEpigenetic regulationHistone acetylationHDAC inhibitors enhance histone acetylation and upregulate PD-L1 expression; histone acetylation is critical for BET protein association with the PD-L1 promoterUpApplying BET inhibitors to suppress PD-L1 and restore anti-cancer immunityHogg et al., 2017Hogg S.J. Vervoort S.J. Deswal S. Ott C.J. Li J. Cluse L.A. Beavis P.A. Darcy P.K. Martin B.P. Spencer A. et al.BET-bromodomain inhibitors engage the host immune system and regulate expression of the immune checkpoint ligand PD-L1.Cell Rep. 2017; 18: 2162-2174Abstract Full Text Full Text PDF PubMed Scopus (191) Google Scholar, Woods et al., 2015Woods D.M. Sodré A.L. Villagra A. Sarnaik A. Sotomayor E.M. Weber J. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade.Cancer Immunol. Res. 2015; 3: 1375-1385Crossref PubMed Scopus (271) Google Scholar, Zhu et al., 2016Zhu H. Bengsch F. Svoronos N. Rutkowski M.R. Bitler B.G. Allegrezza M.J. Yokoyama Y. Kossenkov A.V. Bradner J.E. Conejo-Garcia J.R. Zhang R. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression.Cell Rep. 2016; 16: 2829-2837Abstract Full Text Full Text PDF PubMed Scopus (262) Google ScholarEpigenetic regulationMethylation of H3K3me3Histone methyltransferase (HMTase) MLL1 catalyzes H3K4me3 and activates PD-L1 transcription in tumor cellsUpLu et al., 2017Lu C. Paschall A.V. Shi H. Savage N. Waller J.L. Sabbatini M.E. Oberlies N.H. Pearce C. Liu K. The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion.J. Natl. Cancer Inst. 2017; 109: djw283Crossref PubMed Scopus (139) Google ScholarTranscriptional levelDysregulation of oncogenic genes (intrinsic pathway)Aberrant oncogenic pathway upregulated PD-L1 expression, including MYC, ALK, HIF1α, NF-κB pathway, MAPK pathway, PTEN/PI3K pathway, and EGFR pathwayUpCombining kinase inhibitors and other immune checkpoint inhibitorsAkbay et al., 2013Akbay E.A. Koyama S. Carretero J. Altabef A. Tchaicha J.H. Christensen C.L. Mikse O.R. Cherniack A.D. Beauchamp E.M. Pugh T.J. et al.Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors.Cancer Discov. 2013; 3: 1355-1363Crossref PubMed Scopus (953) Google Scholar, Barsoum et al., 2014Barsoum I.B. Smallwood C.A. Siemens D.R. Graham C.H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells.Cancer Res. 2014; 74: 665-674Crossref PubMed Scopus (481) Google Scholar, Casey et al., 2016Casey S.C. Tong L. Li Y. Do R. Walz S. Fitzgerald K.N. Gouw A.M. Baylot V. Gütgemann I. Eilers M. Felsher D.W. MYC regulates the antitumor immune response through CD47 and PD-L1.Science. 2016; 352: 227-231Crossref PubMed Scopus (745) Google Scholar, Jiang et al., 2013Jiang X. Zhou J. Giobbie-Hurder A. Wargo J. Hodi F.S. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition.Clin. Cancer Res. 2013; 19: 598-609Crossref PubMed Scopus (357) Google Scholar, Kataoka et al., 2016Kataoka K. Shiraishi Y. Takeda Y. Sakata S. Matsumoto M. Nagano S. Maeda T. Nagata Y. Kitanaka A. Mizuno S. et al.Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers.Nature. 2016; 534: 402-406Crossref PubMed Scopus (428) Google Scholar, Marzec et al., 2008Marzec M. Zhang Q. Goradia A. Raghunath P.N. Liu X. Paessler M. Wang H.Y. Wysocka M. Cheng M. Ruggeri B.A. Wasik M.A. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1).Proc. Natl. Acad. Sci. USA. 2008; 105: 20852-20857Crossref PubMed Scopus (554) Google Scholar, Xu et al., 2014Xu C. Fillmore C.M. Koyama S. Wu H. Zhao Y. Chen Z. Herter-Sprie G.S. Akbay E.A. Tchaicha J.H. Altabef A. et al.Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression.Cancer Cell. 2014; 25: 590-604Abstract Full Text Full Text PDF PubMed Scopus (295) Google ScholarTranscriptional levelUpregulation of cytokines in inflammation condition (adaptive pathway)Inflammatory cytokines in tumor region (e.g., IFN-α, IFN-β, IFN-γ, TNF-α, TLR3, TGF-β, IL-4/6/17/27)UpCarbotti et al., 2015Carbotti G. Barisione G. Airoldi I. Mezzanzanica D. Bagnoli M. Ferrero S. Petretto A. Fabbi M. Ferrini S. IL-27 induces the expression of IDO and PD-L1 in human cancer cells.Oncotarget. 2015; 6: 43267-43280Crossref PubMed Scopus (91) Google Scholar, Dong et al., 2002Dong H. Strome S.E. Salomao D.R. Tamura H. Hirano F. Flies D.B. Roche P.C. Lu J. Zhu G. Tamada K. et al.Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion.Nat. Med. 2002; 8: 793-800Crossref PubMed Scopus (0) Google Scholar, Garcia-Diaz et al., 2017Garcia-Diaz A. Shin D.S. Moreno B.H. Saco J. Escuin-Ordinas H. Rodriguez G.A. Zaretsky J.M. Sun L. Hugo W. Wang X. et al.Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression.Cell Rep. 2017; 19: 1189-1201Abstract Full Text Full Text PDF PubMed Scopus (878) Google Scholar, Lienlaf et al., 2016Lienlaf M. Perez-Villarroela P. Knox T. Pabon M. Sahakiana E. Powers J. Woan K.V. Lee C. Cheng F. Deng S. et al.Essential role of HDAC6 in the regulation of PD-L1 in melanoma.Mol. Oncol. 2016; 10: 735-750Crossref PubMed Scopus (96) Google Scholar, Ni et al., 2012Ni X.Y. Sui H.X. Liu Y. Ke S.Z. Wang Y.N. Gao F.G. TGF-β of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation.Oncol. Rep. 2012; 28: 615-621Crossref PubMed Scopus (55) Google Scholar, Pulko et al., 2009Pulko V. Liu X. Krco C.J. Harris K.J. Frigola X. Kwon E.D. Dong H. TLR3-stimulated dendritic cells up-regulate B7-H1 expression and influence the magnitude of CD8 T cell responses to tumor vaccination.J. Immunol. 2009; 183: 3634-3641Crossref PubMed Scopus (94) Google Scholar, Quandt et al., 2014Quandt D. Jasinski-Bergner S. Müller U. Schulze B. Seliger B. Synergistic effects of IL-4 and TNFα on the induction of B7-H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation.J. Transl. Med. 2014; 12: 151Crossref PubMed Scopus (43) Google Scholar, Wang et al., 2017bWang X. Yang L. Huang F. Zhang Q. Liu S. Ma L. You Z. Inflammatory cytokines IL-17 and TNF-α up-regulate PD-L1 expression in human prostate and colon cancer cells.Immunol. Lett. 2017; 184: 7-14Crossref PubMed Scopus (176) Google Scholar, Zhang et al., 2016Zhang N. Zeng Y. Du W. Zhu J. Shen D. Liu Z. Huang J.A. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer.Int. J. Oncol. 2016; 49: 1360-1368Crossref PubMed Scopus (193) Google ScholarTranscriptional levelDownregulation of miRNAUpregulation of PD-L1 by reducing miRNA expression in tumor cells (e.g., miR-200, miR-34a, miR-152, and miR-424)UpChen et al., 2014Chen L. Gibbons D.L. Goswami S. Cortez M.A. Ahn Y.H. Byers L.A. Zhang X. Yi X. Dwyer D. Lin W. et al.Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression.Nat. Commun. 2014; 5: 5241Crossref PubMed Scopus (647) Google Scholar, Cortez et al., 2015Cortez M.A. Ivan C. Valdecanas D. Wang X. Peltier H.J. Ye Y. Araujo L. Carbone D.P. Shilo K. Giri D.K. et al.PDL1 Regulation by p53 via miR-34.J. Natl. Cancer Inst. 2015; 108: djv303Crossref PubMed Scopus (419) Google Scholar, Xie et al., 2017Xie G. Li W. Li R. Wu K. Zhao E. Zhang Y. Zhang P. Shi L. Wang D. Yin Y. et al.Helicobacter pylori promote B7-H1 expression by suppressing miR-152 and miR-200b in gastric cancer cells.PLoS ONE. 2017; 12: e0168822PubMed Google Scholar, Xu et al., 2016Xu S. Tao Z. Hai B. Liang H. Shi Y. Wang T. Song W. Chen Y. OuYang J. Chen J. et al.miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint.Nat. Commun. 2016; 7: 11406Crossref PubMed Scopus (199) Google ScholarPost-transcriptional levelEnhanced translational processUpregulation of the Akt/mTOR/S6K1/eIF4E pathwayUpTargeting the Akt/mTOR pathway to reduce PD-L1 expressionParsa et al., 2007Parsa A.T. Waldron J.S. Panner A. Crane C.A. Parney I.F. Barry J.J. Cachola K.E. Murray J.C. Tihan T. Jensen M.C. et al.Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma.Nat. Med. 2007; 13: 84-88Crossref PubMed Scopus (1056) Google ScholarPost-transcriptional levelEnhanced RNA stabilityRAS signaling can upregulate PD-L1 mRNA stability via modulation of the AU-rich element-binding protein TTPUpCoelho et al., 2017Coelho M.A. de Carne Trecesson S. Rana S. Zecchin D. Moore C. Molina-Arcas M. East P. Spencer-Dene B. Nye E. Barnouin K. et al.Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA.Immunity. 2017; 47: 1083-1099.e1086Abstract Full Text Full Text PDF PubMed Scopus (349) Google ScholarPTM (phosphorylation)GSK3βPhosphorylation of PD-L1 at T180 and S184 recruits β-TrCP for degradation. PARP or c-Met inhibitors enhance PD-L1 expression by blocking GSK3βDownBlocking PRAP or c-Met to increase the therapeutic effect of anti-PD-1/PD-L1 antibodyJiao et al., 2017Jiao S. Xia W. Yamaguchi H. Wei Y. Chen M.K. Hsu J.M. Hsu J.L. Yu W.H. Du Y. Lee H.H. et al.PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression.Clin. Cancer Res. 2017; 23: 3711-3720Crossref PubMed Scopus (537) Google Scholar, Li et al., 2016Li C.W. Lim S.O. Xia W. Lee H.H. Chan L.C. Kuo C.W. Khoo K.H. Chang S.S. Cha J.H. Kim T. et al.Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity.Nat. Commun. 2016; 7: 12632Crossref PubMed Scopus (511) Google Scholar, Li et al., 2019Li H. Li C.W. Li X. Ding Q. Guo L. Liu S. Liu C. Lai C.C. Hsu J.M. Dong Q. et al.MET inhibitors promote liver tumor evasion of the immune response by stabilizing PDL1.Gastroenterology. 2019; 156: 1849-1861.e1813Abstract Full Text Full Text PDF PubMed Scopus (99) Google ScholarPTM (phosphorylation)AMPKAbnormal ER mannose trimming by phosphorylating S195 induces PD-L1 degradation through ERAD pathwayDownCombining metformin and anti-CTLA-4Cha et al., 2018Cha J.H. Yang W.H. Xia W. Wei Y. Chan L.C. Lim S.O. Li C.W. Kim T. Chang S.S. Lee H.H. et al.Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1.Mol. Cell. 2018; 71: 606-620.e607Abstract Full Text Full Text PDF PubMed Scopus (333) Google ScholarPTM (phosphorylation)JAK1Y112 tyrosine phosphorylation enhances STT3A mediated PD-L1 glycosylationUpBlocking the IL-6/JAK1 pathway by IL-6 antibody and combining with other immune checkpoint inhibitorsChan et al., 2019Chan L.C. Li C.W. Xia W. Hsu J.M. Lee H.H. Cha J.H. Wang H.L. Yang W.H. Yen E.Y. Chang W.C. et al.IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion.J. Clin. Invest. 2019; 129: 3324-3338Crossref PubMed Scopus (146) Google ScholarPTM (ubiquitination)CSN5Deubiquitination of PD-L1 by proinflammatory cytokines enhances the stability of PD-L1UpCombining curcumin and anti-CTLA-4Lim et al., 2016Lim S.O. Li C.W. Xia W. Cha J.H. Chan L.C. Wu Y. Chang S.S. Lin W.C. Hsu J.M. Hsu Y.H. et al.Deubiquitination and Stabilization of PD-L1 by CSN5.Cancer Cell. 2016; 30: 925-939Abstract Full Text Full Text PDF PubMed Scopus (403) Google ScholarPTM (ubiquitination, lysosome-mediated degradation)CMTM4/6CMTM4/6 block polyubiquitination of PD-L1 by STUB1 and co-localize with PD-L1 in recycling endosomes to prevent lysosome-mediated degradationUpBurr et al., 2017Burr M.L. Sparbier C.E. Chan Y.C. Williamson J.C. Woods K. Beavis P.A. Lam E.Y.N. Henderson M.A. Bell C.C. Stolzenburg S. et al.CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity.Nature. 2017; 549: 101-105Crossref PubMed Scopus (464) Google Scholar, Mezzadra et al., 2017Mezzadra R. Sun C. Jae L.T. Gomez-Eerland R. de Vries E. Wu W. Logtenberg M.E.W. Slagter M. Rozeman E.A. Hofland I. et al.Identification of CMTM6 and CMTM4 as PD-L1 protein regulators.Nature. 2017; 549: 106-110Crossref PubMed Scopus (376) Google ScholarPTM (ubiquitination)CDK4/6Destabilization of PD-L1 through proteasomal degradation mediated by Cullin 3-SPOPDownBlocking CDK4/6 by palbociclib or ribociclib to increase the therapeutic effect of anti-PD-1/PD-L1 antibodyZhang et al., 2018aZhang J. Bu X. Wang H. Zhu Y. Geng Y. Nihira N.T. Tan Y. Ci Y. Wu F. Dai X. et al.Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance.Nature. 2018; 553: 91-95Crossref PubMed Scopus (485) Google ScholarPTM (glycosylation)B3GNT3LacNAc glycosylation on N192 and N200 is critical for the interaction with PD-1UpInhibiting the EGFR pathway to reduce B3GNT3 expression and PD-L1 glycosylationLi et al., 2018Li C.W. Lim S.O. Chung E.M. Kim Y.S. Park A.H. Yao J. Cha J.H. Xia W. Chan L.C. Kim T. et al.Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1.Cancer Cell. 2018; 33: 187-201.e110Abstract Full Text Full Text PDF PubMed Scopus (273) Google ScholarPTM (glycosylation)STT3A/BCore glycan glycosylation of PD-L1 induced by TGF-β promotes breast cancer EMTUpInhibiting the EGFR pathway to reduce B3GNT3 expression and PD-L1 glycosylationHsu et al., 2018Hsu J.M. Xia W. Hsu Y.H. Chan L.C. Yu W.H. Cha J.H. Chen C.T. Liao H.W. Kuo C.W. Khoo K.H. et al.STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion.Nat. Commun. 2018; 9: 1908Crossref PubMed Scopus (210) Google ScholarPTM (glycosylation)Sigma1 and FKBP51Sigma1 and FKBP51s co-chaperones facilitate glycosylated PD-L1 folding and stability in the ER lumenUpCombining IPAG and SAFit inhibitor to reduce PD-L1 expressionD'Arrigo et al., 2017D'Arrigo P. Russo M. Rea A. Tufano M. Guadagno E. Del Basso De Caro M.L. Pacelli R. Hausch F. Staibano S. Ilardi G. et al.A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma.Oncotarget. 2017; 8: 68291-68304Crossref PubMed Scopus (56) Google Scholar, Maher et al., 2018Maher C.M. Thomas J.D. Haas D.A. Longen C.G. Oyer H.M. Tong J.Y. Kim F.J. Small-molecule sigma1 modulator induces autophagic degradation of PD-L1.Mol. Cancer Res. 2018; 16: 243-255Crossref PubMed Scopus (92) Google ScholarPTM (palmitoylation)DHHC3/9C272 palmitoylation stabilizes PD-L1 for immunosuppressionUpInhibiting DHHC3/9 to reduce the stability of PD-L1Yang et al., 2019Yang Y. Hsu J.M. Sun L. Chan L.C. Li C.W. Hsu J.L. Wei Y. Xia W. Hou J. Qiu Y. Hung M.C. Palmitoylation stabilizes PD-L1 to promote breast tumor growth.Cell Res. 2019; 29: 83-86Crossref PubMed Scopus (95) Google Scholar, Yao et al., 2019Yao H. Lan J. Li C. Shi H. Brosseau J.P. Wang H. Lu H. Fang C. Zhang Y. Liang L. et al.Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours.Nat. Biomed. Eng. 2019; 3: 306-317Crossref PubMed Scopus (161) Google ScholarExtracellular level (exosome)Exosomal machineryExosomal PD-L1 systemically inhibits the activity of T cellsUpChen et al., 2018Chen G. Huang A.C. Zhang W. Zhang G. Wu M. Xu W. Yu Z. Yang J. Wang B. Sun H. et al.Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response.Nature. 2018; 560: 382-386Crossref PubMed Scopus (1325) Google Scholar, Poggio et al., 2019Poggio M. Hu T. Pai C.C. Chu B. Belair C.D. Chang A. Montabana E. Lang U.E. Fu Q. Fong L. et al.Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory.Cell. 2019; 177: 414-427.e413Abstract Full Text Full Text PDF PubMed Scopus (586) Google Scholar, Theodoraki et al., 2018Theodoraki M.N. Yerneni S.S. Hoffmann T.K. Gooding W.E. Whiteside T.L. Clinical significance of PD-L1+ exosomes in plasma of head and neck