Machine learning techniques for protein function prediction

人工智能 机器学习 计算机科学 超参数 特征选择 降维 支持向量机 特征(语言学) 维数之咒 蛋白质结构预测 蛋白质功能预测 功能(生物学) 人工神经网络 蛋白质功能 蛋白质结构 生物 基因 哲学 进化生物学 生物化学 语言学
作者
Rosalin Bonetta,Gianluca Valentino
出处
期刊:Proteins [Wiley]
卷期号:88 (3): 397-413 被引量:128
标识
DOI:10.1002/prot.25832
摘要

Abstract Proteins play important roles in living organisms, and their function is directly linked with their structure. Due to the growing gap between the number of proteins being discovered and their functional characterization (in particular as a result of experimental limitations), reliable prediction of protein function through computational means has become crucial. This paper reviews the machine learning techniques used in the literature, following their evolution from simple algorithms such as logistic regression to more advanced methods like support vector machines and modern deep neural networks. Hyperparameter optimization methods adopted to boost prediction performance are presented. In parallel, the metamorphosis in the features used by these algorithms from classical physicochemical properties and amino acid composition, up to text‐derived features from biomedical literature and learned feature representations using autoencoders, together with feature selection and dimensionality reduction techniques, are also reviewed. The success stories in the application of these techniques to both general and specific protein function prediction are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助yyj采纳,获得10
刚刚
马静雨发布了新的文献求助10
刚刚
云游归尘发布了新的文献求助10
1秒前
2秒前
111发布了新的文献求助10
2秒前
寰宇完成签到,获得积分10
2秒前
2秒前
3秒前
花田雨桐发布了新的文献求助10
3秒前
3秒前
小马甲应助lieditongxu采纳,获得10
3秒前
Jenny应助yan123采纳,获得10
4秒前
狂野的以珊完成签到,获得积分10
4秒前
4秒前
a1oft发布了新的文献求助10
5秒前
5秒前
5秒前
笨笨的不斜完成签到,获得积分10
5秒前
xtqgyy发布了新的文献求助10
5秒前
6秒前
Cat完成签到,获得积分0
6秒前
科研小菜完成签到,获得积分10
7秒前
江南烟雨如笙完成签到,获得积分10
7秒前
7秒前
stt关闭了stt文献求助
7秒前
8秒前
yangang发布了新的文献求助10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
zhui发布了新的文献求助10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
文献缺缺应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794