FDG-PET/CT Radiomics Models for The Early Prediction of Locoregional Recurrence in Head and Neck Cancer

无线电技术 医学 头颈部癌 头颈部 放射科 人工智能 放射治疗 核医学 计算机科学 外科
作者
Cong Hu,Peng Wang,Tian Zhou,Martin Vallières,Chuanpei Xu,Aijun Zhu,Benxin Zhang
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:17 (3): 374-383 被引量:5
标识
DOI:10.2174/1573405616666200712181135
摘要

Purpose: Both CT and PET radiomics is considered as a potential prognostic biomarker in head and neck cancer. This study investigates the value of fused pre-treatment functional imaging (18F-FDG PET/CT) radiomics for modeling of local recurrence of head and neck cancers. Material and Methods: Firstly, 298 patients have been divided into a training set (n = 192) and verification set (n = 106). Secondly, PETs and CTs are fused based on wavelet transform. Thirdly, radiomics features are extracted from the 3D tumor area from PETCT fusion. The training set is used to select the features reduction and predict local recurrence, and the random forest prediction models combining radiomics and clinical variables are constructed. Finally, the ROC curve and KM analysis are used to evaluate the prediction efficiency of the model on the validation set. Results: Two PET/CT fusion radiomics features and three clinic parameters are extracted to construct the radiomics model. AUC value in the verification set 0.70 is better than no fused sets 0.69. The accuracy of 0.66 is not the highest value (0.67). Either consistency index CI 0.70 (from 0.67 to 0.70) or the p-value 0.025 (from 0.03 to 0.025) get the best result in all four models. Conclusion: The radiomics model based on the fusion of PETCT is better than the model based on PET or CT alone in predicting local recurrence, the inclusion of clinical parameters may result in more accurate predictions, which has certain guiding significance for the development of personalized, precise treatment scheme.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘴馋的我完成签到,获得积分10
1秒前
科目三应助chuizi90采纳,获得10
1秒前
orixero应助柔弱的书芹采纳,获得10
1秒前
2秒前
东方半仙完成签到 ,获得积分10
3秒前
虚心若山发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
张萌发布了新的文献求助20
4秒前
shan发布了新的文献求助10
4秒前
Nolan完成签到,获得积分10
4秒前
4秒前
苏酥发布了新的文献求助10
4秒前
ZY完成签到,获得积分10
4秒前
qqq完成签到 ,获得积分10
4秒前
邵璞发布了新的文献求助10
4秒前
科研通AI6应助南淮采纳,获得50
5秒前
5秒前
5秒前
qaxt完成签到,获得积分10
8秒前
guuu完成签到,获得积分10
9秒前
greeeetwist完成签到,获得积分10
9秒前
9秒前
10秒前
yy发布了新的文献求助10
10秒前
Orange应助开口笑的大菠萝采纳,获得10
10秒前
fairy完成签到,获得积分10
10秒前
10秒前
Akim应助shan采纳,获得10
10秒前
求助人员发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
虚心若山完成签到,获得积分10
11秒前
TTLOVEDXX完成签到,获得积分10
12秒前
Criminology34应助keyanrubbish采纳,获得10
13秒前
李联洪完成签到,获得积分10
14秒前
14秒前
传奇3应助无书寄贵人采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608203
求助须知:如何正确求助?哪些是违规求助? 4692781
关于积分的说明 14875613
捐赠科研通 4716881
什么是DOI,文献DOI怎么找? 2544093
邀请新用户注册赠送积分活动 1509086
关于科研通互助平台的介绍 1472795