Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison

均方误差 机器学习 算法 人工智能 人工神经网络 计算机科学 支持向量机 气象学 云量 数学 地理 统计 云计算 操作系统
作者
Ümit Ağbulut,Ali Etem Gürel,Yunus Biçen
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:135: 110114-110114 被引量:186
标识
DOI:10.1016/j.rser.2020.110114
摘要

The prediction of global solar radiation for the regions is of great importance in terms of giving directions of solar energy conversion systems (design, modeling, and operation), selection of proper regions, and even future investment policies of the decision-makers. With this viewpoint, the objective of this paper is to predict daily global solar radiation data of four provinces (Kırklareli, Tokat, Nevşehir and Karaman) which have different solar radiation distribution in Turkey. In the study, four different machine learning algorithms (support vector machine (SVM), artificial neural network (ANN), kernel and nearest-neighbor (k-NN), and deep learning (DL)) are used. In the training of these algorithms, daily minimum and maximum ambient temperature, cloud cover, daily extraterrestrial solar radiation, day length and solar radiation of these provinces are used. The data is supplied from the Turkish State Meteorological Service and cover the last two years (01.01.2018–31.12.2019). To decide on the success of these algorithms, seven different statistical metrics (R2, RMSE, rRMSE, MBE, MABE, t-stat, and MAPE) are discussed in the study. The results shows that R2, MABE, and RMSE values of all algorithms are ranging from 0.855 to 0.936, from 1.870 to 2.328 MJ/m2, from 2.273 to 2.820 MJ/m2, respectively. At all cases, k-NN exhibited the worst result in terms of R2, RMSE, and MABE metrics. Of all the models, DL was the only model that exceeded the t-critic value. In conclusion, the present paper is reporting that all machine learning algorithms tested in this study can be used in the prediction of daily global solar radiation data with a high accuracy; however, the ANN algorithm is the best fitting algorithm among all algorithms. Then it is followed by DL, SVM and k-NN, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕容铭完成签到,获得积分10
1秒前
sss完成签到,获得积分10
1秒前
1秒前
三三得九完成签到 ,获得积分10
2秒前
斯文败类应助yzqtf采纳,获得10
2秒前
Serena完成签到,获得积分10
2秒前
3秒前
瞳梦完成签到,获得积分10
3秒前
123完成签到,获得积分10
3秒前
LWW发布了新的文献求助10
5秒前
我要读博士完成签到 ,获得积分10
6秒前
hashtag完成签到,获得积分10
6秒前
啦啦啦~完成签到,获得积分10
6秒前
7秒前
yao完成签到,获得积分10
7秒前
8秒前
asenda完成签到,获得积分0
9秒前
高晓澍完成签到,获得积分10
9秒前
8R60d8应助飘逸雨琴采纳,获得10
10秒前
虚心的半梅完成签到,获得积分10
11秒前
326503177完成签到,获得积分10
11秒前
11秒前
无语的小馒头完成签到,获得积分10
11秒前
加减乘除发布了新的文献求助10
12秒前
youbin完成签到 ,获得积分10
12秒前
玉米烤肠完成签到 ,获得积分10
13秒前
Snowy完成签到,获得积分10
13秒前
13秒前
14秒前
了了了完成签到 ,获得积分20
14秒前
DZQ完成签到,获得积分10
14秒前
三眼乌鸦发布了新的文献求助10
15秒前
16秒前
16秒前
11发布了新的文献求助10
18秒前
闫栋完成签到 ,获得积分10
18秒前
yecheng完成签到,获得积分10
19秒前
科研打工人完成签到,获得积分10
19秒前
超级无心完成签到,获得积分10
19秒前
ytong发布了新的文献求助10
19秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793788
关于积分的说明 7807722
捐赠科研通 2450106
什么是DOI,文献DOI怎么找? 1303653
科研通“疑难数据库(出版商)”最低求助积分说明 627017
版权声明 601350