Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison

均方误差 机器学习 算法 人工智能 人工神经网络 计算机科学 支持向量机 气象学 云量 数学 地理 统计 云计算 操作系统
作者
Ümit Ağbulut,Ali Etem Gürel,Yunus Biçen
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:135: 110114-110114 被引量:186
标识
DOI:10.1016/j.rser.2020.110114
摘要

The prediction of global solar radiation for the regions is of great importance in terms of giving directions of solar energy conversion systems (design, modeling, and operation), selection of proper regions, and even future investment policies of the decision-makers. With this viewpoint, the objective of this paper is to predict daily global solar radiation data of four provinces (Kırklareli, Tokat, Nevşehir and Karaman) which have different solar radiation distribution in Turkey. In the study, four different machine learning algorithms (support vector machine (SVM), artificial neural network (ANN), kernel and nearest-neighbor (k-NN), and deep learning (DL)) are used. In the training of these algorithms, daily minimum and maximum ambient temperature, cloud cover, daily extraterrestrial solar radiation, day length and solar radiation of these provinces are used. The data is supplied from the Turkish State Meteorological Service and cover the last two years (01.01.2018–31.12.2019). To decide on the success of these algorithms, seven different statistical metrics (R2, RMSE, rRMSE, MBE, MABE, t-stat, and MAPE) are discussed in the study. The results shows that R2, MABE, and RMSE values of all algorithms are ranging from 0.855 to 0.936, from 1.870 to 2.328 MJ/m2, from 2.273 to 2.820 MJ/m2, respectively. At all cases, k-NN exhibited the worst result in terms of R2, RMSE, and MABE metrics. Of all the models, DL was the only model that exceeded the t-critic value. In conclusion, the present paper is reporting that all machine learning algorithms tested in this study can be used in the prediction of daily global solar radiation data with a high accuracy; however, the ANN algorithm is the best fitting algorithm among all algorithms. Then it is followed by DL, SVM and k-NN, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fengbeing完成签到,获得积分10
1秒前
Owen应助liuyue采纳,获得20
2秒前
张祥芸完成签到 ,获得积分10
2秒前
英俊的铭应助二三采纳,获得10
3秒前
5秒前
6秒前
张祥芸关注了科研通微信公众号
6秒前
gyl完成签到 ,获得积分10
7秒前
任性的冷梅完成签到,获得积分10
7秒前
小二郎应助chy采纳,获得10
7秒前
单薄绮露完成签到,获得积分10
8秒前
lin完成签到,获得积分10
9秒前
9秒前
勤劳糜发布了新的文献求助10
10秒前
韵寒禾香发布了新的文献求助10
11秒前
11秒前
鲍文启完成签到 ,获得积分10
12秒前
12秒前
Shirley完成签到,获得积分10
12秒前
田様应助科研进化中采纳,获得10
13秒前
酷炫的不二完成签到,获得积分20
13秒前
还在吗完成签到,获得积分10
14秒前
15秒前
zyn发布了新的文献求助10
15秒前
yshhhhhhhh应助33采纳,获得10
16秒前
林天完成签到,获得积分10
17秒前
zhengpaipian完成签到,获得积分10
17秒前
爆米花应助培培采纳,获得10
18秒前
19秒前
20秒前
老虎皮发布了新的文献求助10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
22秒前
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343