Prediction of drug combination effects with a minimal set of experiments

计算机科学 药品 集合(抽象数据类型) 化学 医学 药理学 程序设计语言
作者
Aleksandr Ianevski,Anil K Giri,Prson Gautam,Alexander Kononov,Swapnil Potdar,Jani Saarela,Krister Wennerberg,Tero Aittokallio
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:1 (12): 568-577 被引量:137
标识
DOI:10.1038/s42256-019-0122-4
摘要

High-throughput drug combination screening provides a systematic strategy to discover unexpected combinatorial synergies in pre-clinical cell models. However, phenotypic combinatorial screening with multi-dose matrix assays is experimentally expensive, especially when the aim is to identify selective combination synergies across a large panel of cell lines or patient samples. Here, we implement DECREASE, an efficient machine learning model that requires only a limited set of pairwise dose–response measurements for accurate prediction of drug combination synergy in a given sample. Using a compendium of 23,595 drug combination matrices tested in various cancer cell lines and malaria and Ebola infection models, we demonstrate how cost-effective experimental designs with DECREASE capture almost the same degree of information for synergy and antagonism detection as the fully measured dose–response matrices. Measuring only the matrix diagonal provides an accurate and practical option for combinatorial screening. The minimal-input web implementation enables applications of DECREASE to both pre-clinical and translational studies. Drug combinations are often an effective means of managing complex diseases, but understanding the synergies of drug combinations requires extensive resources. The authors developed an efficient machine learning model that requires only a limited set of pairwise dose–response measurements for the accurate prediction of synergistic and antagonistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
祎薇完成签到,获得积分10
刚刚
大模型应助白色风车采纳,获得10
1秒前
李健的小迷弟应助Zj采纳,获得10
1秒前
xiangjun完成签到,获得积分10
2秒前
2秒前
attilio发布了新的文献求助30
3秒前
ll发布了新的文献求助200
5秒前
外向从灵完成签到,获得积分10
6秒前
熙若白完成签到,获得积分10
7秒前
HORSE047完成签到,获得积分10
7秒前
7秒前
烟花应助33采纳,获得30
10秒前
大大哈哈完成签到 ,获得积分10
12秒前
ZZZZZZZZF完成签到,获得积分10
13秒前
sjy发布了新的文献求助10
13秒前
14秒前
15秒前
vxi完成签到,获得积分10
17秒前
17秒前
Akim应助脑残骑士老张采纳,获得10
18秒前
马康辉关注了科研通微信公众号
20秒前
22秒前
混子发布了新的文献求助10
22秒前
笑一笑发布了新的文献求助30
23秒前
共享精神应助长言采纳,获得10
24秒前
乐观小之应助xuan采纳,获得10
25秒前
Jinna706完成签到,获得积分10
26秒前
27秒前
澄碧星林完成签到,获得积分10
29秒前
闪闪的完成签到,获得积分10
29秒前
听风完成签到,获得积分10
29秒前
zhu完成签到 ,获得积分10
30秒前
Rein完成签到,获得积分10
30秒前
有魅力的凡灵完成签到,获得积分10
31秒前
32秒前
orixero应助LUK_采纳,获得10
33秒前
科目三应助孤独的珩采纳,获得10
33秒前
34秒前
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958225
求助须知:如何正确求助?哪些是违规求助? 3504388
关于积分的说明 11118283
捐赠科研通 3235682
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565