An FPGA-based RNN-T Inference Accelerator with PIM-HBM

计算机科学 现场可编程门阵列 硬件加速 查阅表格 可重构性 计算机硬件 循环神经网络 嵌入式系统 人工智能 人工神经网络 电信 程序设计语言
作者
Shin-haeng Kang,Sukhan Lee,Byeongho Kim,Hweesoo Kim,Kyomin Sohn,Nam Sung Kim,Eojin Lee
标识
DOI:10.1145/3490422.3502355
摘要

In this paper, we implemented a world-first RNN-T inference accelerator using FPGA with PIM-HBM that can multiply the internal bandwidth of the memory. The accelerator offloads matrix-vector multiplication (GEMV) operations of LSTM layers in RNN-T into PIM-HBM, and PIM-HBM reduces the execution time of GEMV significantly by exploiting HBM internal bandwidth. To ensure that the memory commands are issued in a pre-defined order, which is one of the most important constraints in exploiting PIM-HBM, we implement a direct memory access (DMA) module and change configuration of the on-chip memory controller by utilizing the flexibility and reconfigurability of the FPGA. In addition, we design the other hardware modules for acceleration such as non-linear functions (i.e., sigmoid and hyperbolic tangent), element-wise operation, and ReLU module, to operate these compute-bound RNN-T operations on FPGA. For this, we prepare FP16 quantized weight and MLPerf input datasets, and modify the PCIe device driver and C++ based control codes. On our evaluation, our accelerator with PIM-HBM reduces the execution time of RNN-T by 2.5 × on average with 11.09% reduced LUT size and improves energy efficiency up to 2.6 × compared to the baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
思源应助木木三采纳,获得10
3秒前
SYLH应助mystryjoker采纳,获得10
4秒前
木樨发布了新的文献求助10
4秒前
4秒前
爱lx完成签到,获得积分10
6秒前
哈哈哈应助进_采纳,获得10
8秒前
8秒前
赘婿应助爱笑紫菜采纳,获得10
8秒前
lili完成签到,获得积分10
10秒前
12秒前
xhuryts发布了新的文献求助10
12秒前
rmbsLHC完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助mystryjoker采纳,获得10
15秒前
Qianbaor68应助大力静竹采纳,获得10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735677
求助须知:如何正确求助?哪些是违规求助? 3279465
关于积分的说明 10015528
捐赠科研通 2996202
什么是DOI,文献DOI怎么找? 1643929
邀请新用户注册赠送积分活动 781579
科研通“疑难数据库(出版商)”最低求助积分说明 749423