亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Activity Imputation of Shared e-Bikes Travels in Urban Areas

TRIPS体系结构 随机森林 计算机科学 全球定位系统 运输工程 地理 人工智能 电信 工程类 并行计算
作者
Natalia Selini Hadjidimitriou,Marco Lippi,Marco Mamei
出处
期刊:Lecture Notes in Computer Science 卷期号:: 442-456
标识
DOI:10.1007/978-3-030-95467-3_32
摘要

AbstractIn 2017, about 900 thousands motorbikes were registered in Europe. These types of vehicles are often selected as the only alternative when the congestion in urban areas is high, thus consistently contributing to environmental emissions. This work proposes a data-driven approach to analyse trip purposes of shared electric bikes users in urban areas. Knowing how e-bikes are used in terms of trip duration and purpose is important to integrate them in the current transportation system. The data set consists of GPS traces collected during one year and three months representing 6,705 trips performed by 91 users of the e-bike sharing service located in three South European cities (Malaga, Rome and Bari). The proposed methodology consists of computing a set of features related to the temporal (time of the day, day of the week), meteorological (e.g. weather, season) and topological (the percentage of km traveled on roads with cycleways, speed on different types of roads, proximity of arrival to the nearest Point of Interest) characteristics of the trip. Based on the identified features, logistic regression and random forest classifiers are trained to predict the purpose of the trip. The random forest performs better with an average accuracy, over the 10 random splits of the train and test set, of 82%. The overall accuracy decreases to 67% when training and test sets are split at the level of users and not at the level of trips. Finally, the travel activities are predicted for the entire data set and the features are analysed to provide a description of the behaviour of shared e-bike users.KeywordsTrip imputationTravel activity behavioure-bikesActivity detectionGPS tracesMachine learningRandom forestMultinomial logistic regressionSafety
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
5秒前
15秒前
16秒前
19秒前
licnyu完成签到,获得积分20
20秒前
好困应助morena采纳,获得10
25秒前
卓卓卓发布了新的文献求助10
25秒前
彭于晏应助licnyu采纳,获得50
26秒前
35秒前
35秒前
35秒前
36秒前
36秒前
36秒前
37秒前
37秒前
37秒前
37秒前
37秒前
37秒前
37秒前
37秒前
37秒前
37秒前
38秒前
38秒前
38秒前
38秒前
121314wld发布了新的文献求助10
40秒前
121314wld发布了新的文献求助10
40秒前
121314wld发布了新的文献求助10
42秒前
121314wld发布了新的文献求助10
42秒前
121314wld发布了新的文献求助10
42秒前
聪明的哈密瓜完成签到,获得积分10
43秒前
有人给754的求助进行了留言
56秒前
思源应助121314wld采纳,获得10
1分钟前
小马甲应助121314wld采纳,获得10
1分钟前
NexusExplorer应助121314wld采纳,获得10
1分钟前
李健的小迷弟应助121314wld采纳,获得10
1分钟前
CodeCraft应助121314wld采纳,获得10
1分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130230
求助须知:如何正确求助?哪些是违规求助? 2780956
关于积分的说明 7750532
捐赠科研通 2436201
什么是DOI,文献DOI怎么找? 1294557
科研通“疑难数据库(出版商)”最低求助积分说明 623731
版权声明 600590