亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Activity Imputation of Shared e-Bikes Travels in Urban Areas

TRIPS体系结构 随机森林 计算机科学 全球定位系统 运输工程 地理 人工智能 电信 工程类 并行计算
作者
Natalia Selini Hadjidimitriou,Marco Lippi,Marco Mamei
出处
期刊:Lecture Notes in Computer Science 卷期号:: 442-456
标识
DOI:10.1007/978-3-030-95467-3_32
摘要

AbstractIn 2017, about 900 thousands motorbikes were registered in Europe. These types of vehicles are often selected as the only alternative when the congestion in urban areas is high, thus consistently contributing to environmental emissions. This work proposes a data-driven approach to analyse trip purposes of shared electric bikes users in urban areas. Knowing how e-bikes are used in terms of trip duration and purpose is important to integrate them in the current transportation system. The data set consists of GPS traces collected during one year and three months representing 6,705 trips performed by 91 users of the e-bike sharing service located in three South European cities (Malaga, Rome and Bari). The proposed methodology consists of computing a set of features related to the temporal (time of the day, day of the week), meteorological (e.g. weather, season) and topological (the percentage of km traveled on roads with cycleways, speed on different types of roads, proximity of arrival to the nearest Point of Interest) characteristics of the trip. Based on the identified features, logistic regression and random forest classifiers are trained to predict the purpose of the trip. The random forest performs better with an average accuracy, over the 10 random splits of the train and test set, of 82%. The overall accuracy decreases to 67% when training and test sets are split at the level of users and not at the level of trips. Finally, the travel activities are predicted for the entire data set and the features are analysed to provide a description of the behaviour of shared e-bike users.KeywordsTrip imputationTravel activity behavioure-bikesActivity detectionGPS tracesMachine learningRandom forestMultinomial logistic regressionSafety
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
衣裳薄完成签到,获得积分10
5秒前
吃了吃了完成签到,获得积分10
28秒前
31秒前
Hello应助yifei采纳,获得10
32秒前
谷雨完成签到 ,获得积分20
32秒前
谷雨关注了科研通微信公众号
35秒前
丁浩伦应助科研通管家采纳,获得10
38秒前
weske完成签到 ,获得积分10
40秒前
无花果应助干净南风采纳,获得10
46秒前
momomomo完成签到,获得积分10
55秒前
1分钟前
搜集达人应助牟青采纳,获得10
1分钟前
yifei发布了新的文献求助10
1分钟前
朱宣诚发布了新的文献求助10
1分钟前
1分钟前
鱼块完成签到 ,获得积分10
1分钟前
Lucas应助yifei采纳,获得10
1分钟前
andrele发布了新的文献求助10
1分钟前
科研通AI6应助杏仁核采纳,获得10
1分钟前
朱宣诚完成签到,获得积分10
1分钟前
1分钟前
么么么发布了新的文献求助10
1分钟前
Ava应助12彡采纳,获得10
1分钟前
1分钟前
么么么完成签到 ,获得积分10
1分钟前
12彡发布了新的文献求助10
1分钟前
眭超阳完成签到 ,获得积分10
1分钟前
思源应助粥粥采纳,获得80
2分钟前
orixero应助粥粥采纳,获得10
2分钟前
爆米花应助粥粥采纳,获得10
2分钟前
共享精神应助粥粥采纳,获得10
2分钟前
852应助粥粥采纳,获得10
2分钟前
无花果应助粥粥采纳,获得10
2分钟前
bkagyin应助粥粥采纳,获得10
2分钟前
星辰大海应助粥粥采纳,获得10
2分钟前
斯文败类应助粥粥采纳,获得10
2分钟前
万能图书馆应助粥粥采纳,获得10
2分钟前
在水一方应助粥粥采纳,获得10
2分钟前
小蘑菇应助粥粥采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581720
求助须知:如何正确求助?哪些是违规求助? 3999594
关于积分的说明 12381455
捐赠科研通 3674322
什么是DOI,文献DOI怎么找? 2024907
邀请新用户注册赠送积分活动 1058770
科研通“疑难数据库(出版商)”最低求助积分说明 945556