亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Activity Imputation of Shared e-Bikes Travels in Urban Areas

TRIPS体系结构 随机森林 计算机科学 全球定位系统 运输工程 地理 人工智能 电信 工程类 并行计算
作者
Natalia Selini Hadjidimitriou,Marco Lippi,Marco Mamei
出处
期刊:Lecture Notes in Computer Science 卷期号:: 442-456
标识
DOI:10.1007/978-3-030-95467-3_32
摘要

AbstractIn 2017, about 900 thousands motorbikes were registered in Europe. These types of vehicles are often selected as the only alternative when the congestion in urban areas is high, thus consistently contributing to environmental emissions. This work proposes a data-driven approach to analyse trip purposes of shared electric bikes users in urban areas. Knowing how e-bikes are used in terms of trip duration and purpose is important to integrate them in the current transportation system. The data set consists of GPS traces collected during one year and three months representing 6,705 trips performed by 91 users of the e-bike sharing service located in three South European cities (Malaga, Rome and Bari). The proposed methodology consists of computing a set of features related to the temporal (time of the day, day of the week), meteorological (e.g. weather, season) and topological (the percentage of km traveled on roads with cycleways, speed on different types of roads, proximity of arrival to the nearest Point of Interest) characteristics of the trip. Based on the identified features, logistic regression and random forest classifiers are trained to predict the purpose of the trip. The random forest performs better with an average accuracy, over the 10 random splits of the train and test set, of 82%. The overall accuracy decreases to 67% when training and test sets are split at the level of users and not at the level of trips. Finally, the travel activities are predicted for the entire data set and the features are analysed to provide a description of the behaviour of shared e-bike users.KeywordsTrip imputationTravel activity behavioure-bikesActivity detectionGPS tracesMachine learningRandom forestMultinomial logistic regressionSafety
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
千早爱音应助科研通管家采纳,获得20
7秒前
11秒前
ding应助典雅的曼文采纳,获得10
15秒前
add5a2发布了新的文献求助10
16秒前
26秒前
手撕蛋完成签到 ,获得积分10
1分钟前
1分钟前
香蕉觅云应助Biutii采纳,获得10
1分钟前
笨蛋美女完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助李剑鸿采纳,获得100
1分钟前
1分钟前
2分钟前
BNN1203381110完成签到 ,获得积分10
2分钟前
2分钟前
王葆蕾完成签到 ,获得积分10
2分钟前
顺心的满天完成签到,获得积分10
2分钟前
2分钟前
Leone发布了新的文献求助10
2分钟前
Leone完成签到,获得积分10
2分钟前
时尚雁玉完成签到,获得积分10
2分钟前
顺利奇异果完成签到,获得积分20
2分钟前
ruixuezhou完成签到,获得积分10
3分钟前
add5a2完成签到 ,获得积分10
3分钟前
3分钟前
执意完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
123发布了新的文献求助10
4分钟前
科研通AI6应助科研通管家采纳,获得150
4分钟前
4分钟前
充电宝应助123采纳,获得10
4分钟前
碝磩完成签到 ,获得积分10
4分钟前
浮游应助甜美的起眸采纳,获得30
4分钟前
4分钟前
时尚雁玉发布了新的文献求助10
4分钟前
4分钟前
Eileen完成签到 ,获得积分10
4分钟前
zs完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302544
求助须知:如何正确求助?哪些是违规求助? 4449661
关于积分的说明 13848586
捐赠科研通 4335935
什么是DOI,文献DOI怎么找? 2380642
邀请新用户注册赠送积分活动 1375637
关于科研通互助平台的介绍 1341930