Activity Imputation of Shared e-Bikes Travels in Urban Areas

TRIPS体系结构 随机森林 计算机科学 全球定位系统 运输工程 地理 人工智能 电信 工程类 并行计算
作者
Natalia Selini Hadjidimitriou,Marco Lippi,Marco Mamei
出处
期刊:Lecture Notes in Computer Science 卷期号:: 442-456
标识
DOI:10.1007/978-3-030-95467-3_32
摘要

AbstractIn 2017, about 900 thousands motorbikes were registered in Europe. These types of vehicles are often selected as the only alternative when the congestion in urban areas is high, thus consistently contributing to environmental emissions. This work proposes a data-driven approach to analyse trip purposes of shared electric bikes users in urban areas. Knowing how e-bikes are used in terms of trip duration and purpose is important to integrate them in the current transportation system. The data set consists of GPS traces collected during one year and three months representing 6,705 trips performed by 91 users of the e-bike sharing service located in three South European cities (Malaga, Rome and Bari). The proposed methodology consists of computing a set of features related to the temporal (time of the day, day of the week), meteorological (e.g. weather, season) and topological (the percentage of km traveled on roads with cycleways, speed on different types of roads, proximity of arrival to the nearest Point of Interest) characteristics of the trip. Based on the identified features, logistic regression and random forest classifiers are trained to predict the purpose of the trip. The random forest performs better with an average accuracy, over the 10 random splits of the train and test set, of 82%. The overall accuracy decreases to 67% when training and test sets are split at the level of users and not at the level of trips. Finally, the travel activities are predicted for the entire data set and the features are analysed to provide a description of the behaviour of shared e-bike users.KeywordsTrip imputationTravel activity behavioure-bikesActivity detectionGPS tracesMachine learningRandom forestMultinomial logistic regressionSafety
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MUAN完成签到 ,获得积分10
刚刚
嘻哈发布了新的文献求助10
1秒前
小二郎应助明天见采纳,获得10
3秒前
完美世界应助点墨采纳,获得10
3秒前
婷婷完成签到,获得积分10
4秒前
惟依发布了新的文献求助10
4秒前
4秒前
77发布了新的文献求助10
5秒前
希721完成签到 ,获得积分10
5秒前
syvshc完成签到,获得积分0
6秒前
JeromineJade发布了新的文献求助10
6秒前
susu完成签到,获得积分20
7秒前
危机的依凝完成签到 ,获得积分10
9秒前
Ray完成签到,获得积分10
10秒前
大模型应助Xin采纳,获得10
11秒前
12秒前
千江月完成签到,获得积分10
13秒前
小二郎应助嘻哈采纳,获得10
14秒前
CodeCraft应助科多兽骑士采纳,获得10
14秒前
欣慰外套完成签到 ,获得积分10
15秒前
15秒前
烟花应助77采纳,获得10
18秒前
wen_xxx发布了新的文献求助10
18秒前
染夏发布了新的文献求助10
18秒前
19秒前
陈尘完成签到,获得积分10
19秒前
bkagyin应助zhumeinv采纳,获得10
20秒前
21秒前
22秒前
22秒前
嘻哈完成签到,获得积分10
24秒前
染夏完成签到,获得积分10
26秒前
lxp发布了新的文献求助10
26秒前
索多倍完成签到 ,获得积分10
26秒前
27秒前
lankbki123关注了科研通微信公众号
27秒前
27秒前
研友_84WJXZ发布了新的文献求助30
28秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993059
求助须知:如何正确求助?哪些是违规求助? 3533948
关于积分的说明 11264188
捐赠科研通 3273624
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 882991
科研通“疑难数据库(出版商)”最低求助积分说明 809629