ENSO Prediction

可预测性 气候学 厄尔尼诺南方涛动 多元ENSO指数 环境科学 预测技巧 限制 北方的 气候模式 地球仪 气象学 大气科学 南方涛动 气候变化 地理 海洋学 地质学 数学 统计 工程类 考古 眼科 机械工程 医学
作者
Michelle L’Heureux,Aaron F. Z. Levine,Matthew Newman,Catherine Ganter,Jing‐Jia Luo,Michael K. Tippett,Tim Stockdale
出处
期刊:Geophysical monograph 卷期号:: 227-246 被引量:38
标识
DOI:10.1002/9781119548164.ch10
摘要

Chapter 10 ENSO Prediction Michelle L. L'Heureux, Michelle L. L'Heureux National Oceanic and Atmospheric Administration, NWS/NCEP/Climate Prediction Center, College Park, MD, USASearch for more papers by this authorAaron F. Z. Levine, Aaron F. Z. Levine Department of Atmospheric Sciences, University of Washington, Seattle, WA, USASearch for more papers by this authorMatthew Newman, Matthew Newman University of Colorado/CIRES, NOAA/ESRL Physical Sciences Division, Boulder, CO, USASearch for more papers by this authorCatherine Ganter, Catherine Ganter Australian Bureau of Meteorology, Melbourne, VIC, AustraliaSearch for more papers by this authorJing-Jia Luo, Jing-Jia Luo Institute for Climate and Application Research (ICAR)/CICFEM/KLME/ILCEC, Nanjing University of Information Science and Technology, Nanjing, ChinaSearch for more papers by this authorMichael K. Tippett, Michael K. Tippett Department of Applied Physics and Applied Mathematics, Columbia University, NY, USASearch for more papers by this authorTimothy N. Stockdale, Timothy N. Stockdale European Centre for Medium-Range Weather Forecasts, Reading, UKSearch for more papers by this author Michelle L. L'Heureux, Michelle L. L'Heureux National Oceanic and Atmospheric Administration, NWS/NCEP/Climate Prediction Center, College Park, MD, USASearch for more papers by this authorAaron F. Z. Levine, Aaron F. Z. Levine Department of Atmospheric Sciences, University of Washington, Seattle, WA, USASearch for more papers by this authorMatthew Newman, Matthew Newman University of Colorado/CIRES, NOAA/ESRL Physical Sciences Division, Boulder, CO, USASearch for more papers by this authorCatherine Ganter, Catherine Ganter Australian Bureau of Meteorology, Melbourne, VIC, AustraliaSearch for more papers by this authorJing-Jia Luo, Jing-Jia Luo Institute for Climate and Application Research (ICAR)/CICFEM/KLME/ILCEC, Nanjing University of Information Science and Technology, Nanjing, ChinaSearch for more papers by this authorMichael K. Tippett, Michael K. Tippett Department of Applied Physics and Applied Mathematics, Columbia University, NY, USASearch for more papers by this authorTimothy N. Stockdale, Timothy N. Stockdale European Centre for Medium-Range Weather Forecasts, Reading, UKSearch for more papers by this author Book Editor(s):Michael J. McPhaden, Michael J. McPhadenSearch for more papers by this authorAgus Santoso, Agus SantosoSearch for more papers by this authorWenju Cai, Wenju CaiSearch for more papers by this author First published: 23 October 2020 https://doi.org/10.1002/9781119548164.ch10Citations: 2Book Series:Geophysical Monograph Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat Summary The El Niño-Southern Oscillation (ENSO) is a coupled ocean-atmosphere phenomenon of variability that is a leading source of seasonal climate prediction skill across the globe. The first ENSO prediction was made in the mid-1970s, but it was another 10–15 years before operational centers, using simple, coupled climate models, began to make routine ENSO predictions. These early forecast models were succeeded in the 1990s by more sophisticated dynamical and statistical models, which created the basis for real-time seasonal outlooks over the globe. These models, and more recent multimodel ensembles, also inform our understanding and estimates of the predictability and prediction skill of ENSO, which varies seasonally and from decade to decade. ENSO predictability largely stems from slowly evolving oceanic conditions, with short-term atmospheric fluctuations often limiting predictability on seasonal timescales. Despite improved models and better initializations, prediction skill remains low for forecasts passing through the boreal spring, the so-called spring prediction barrier. Furthermore, prediction skill and predictability have varied significantly over the past couple decades. Higher skill and predictability are evident during periods of larger amplitude ENSO events (e.g., Eastern Pacific El Niño), whereas lower skill/predictability is associated with lower amplitude events (e.g., Central Pacific El Niño). These natural variations in our ability to predict ENSO, together with challenges during 2014–2016, motivate the search for understanding of how anthropogenic warming will influence seasonal ENSO prediction. Citing Literature El Niño Southern Oscillation in a Changing Climate RelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
末末完成签到 ,获得积分10
2秒前
无为完成签到 ,获得积分10
3秒前
白嫖论文完成签到 ,获得积分10
5秒前
上官若男应助忧伤的步美采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
11秒前
从心随缘完成签到 ,获得积分10
12秒前
花花发布了新的文献求助10
14秒前
牛奶面包完成签到 ,获得积分10
15秒前
16秒前
岁月如歌完成签到 ,获得积分0
16秒前
19秒前
Li完成签到,获得积分10
21秒前
张琨完成签到 ,获得积分10
21秒前
21秒前
sunnyqqz完成签到,获得积分10
24秒前
热情的乘风完成签到,获得积分20
24秒前
26秒前
霍凡白完成签到,获得积分10
27秒前
28秒前
Feng发布了新的文献求助20
29秒前
怕孤单的若颜完成签到 ,获得积分10
31秒前
32秒前
ruochenzu发布了新的文献求助10
35秒前
zhongu发布了新的文献求助10
39秒前
阳光彩虹小白马完成签到 ,获得积分10
39秒前
Feng完成签到,获得积分10
41秒前
花花完成签到,获得积分10
43秒前
46秒前
量子星尘发布了新的文献求助10
48秒前
杨一完成签到 ,获得积分10
51秒前
猫猫头完成签到 ,获得积分10
52秒前
54秒前
57秒前
忒寒碜完成签到,获得积分10
1分钟前
1分钟前
XU博士完成签到,获得积分10
1分钟前
哭泣青烟完成签到 ,获得积分10
1分钟前
roundtree完成签到 ,获得积分0
1分钟前
等待谷南完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022