ENSO Prediction

可预测性 气候学 厄尔尼诺南方涛动 多元ENSO指数 环境科学 预测技巧 限制 北方的 气候模式 地球仪 气象学 大气科学 南方涛动 气候变化 地理 海洋学 地质学 数学 统计 工程类 考古 眼科 机械工程 医学
作者
Michelle L’Heureux,Aaron F. Z. Levine,Matthew Newman,Catherine Ganter,Jing‐Jia Luo,Michael K. Tippett,Tim Stockdale
出处
期刊:Geophysical monograph 卷期号:: 227-246 被引量:38
标识
DOI:10.1002/9781119548164.ch10
摘要

Chapter 10 ENSO Prediction Michelle L. L'Heureux, Michelle L. L'Heureux National Oceanic and Atmospheric Administration, NWS/NCEP/Climate Prediction Center, College Park, MD, USASearch for more papers by this authorAaron F. Z. Levine, Aaron F. Z. Levine Department of Atmospheric Sciences, University of Washington, Seattle, WA, USASearch for more papers by this authorMatthew Newman, Matthew Newman University of Colorado/CIRES, NOAA/ESRL Physical Sciences Division, Boulder, CO, USASearch for more papers by this authorCatherine Ganter, Catherine Ganter Australian Bureau of Meteorology, Melbourne, VIC, AustraliaSearch for more papers by this authorJing-Jia Luo, Jing-Jia Luo Institute for Climate and Application Research (ICAR)/CICFEM/KLME/ILCEC, Nanjing University of Information Science and Technology, Nanjing, ChinaSearch for more papers by this authorMichael K. Tippett, Michael K. Tippett Department of Applied Physics and Applied Mathematics, Columbia University, NY, USASearch for more papers by this authorTimothy N. Stockdale, Timothy N. Stockdale European Centre for Medium-Range Weather Forecasts, Reading, UKSearch for more papers by this author Michelle L. L'Heureux, Michelle L. L'Heureux National Oceanic and Atmospheric Administration, NWS/NCEP/Climate Prediction Center, College Park, MD, USASearch for more papers by this authorAaron F. Z. Levine, Aaron F. Z. Levine Department of Atmospheric Sciences, University of Washington, Seattle, WA, USASearch for more papers by this authorMatthew Newman, Matthew Newman University of Colorado/CIRES, NOAA/ESRL Physical Sciences Division, Boulder, CO, USASearch for more papers by this authorCatherine Ganter, Catherine Ganter Australian Bureau of Meteorology, Melbourne, VIC, AustraliaSearch for more papers by this authorJing-Jia Luo, Jing-Jia Luo Institute for Climate and Application Research (ICAR)/CICFEM/KLME/ILCEC, Nanjing University of Information Science and Technology, Nanjing, ChinaSearch for more papers by this authorMichael K. Tippett, Michael K. Tippett Department of Applied Physics and Applied Mathematics, Columbia University, NY, USASearch for more papers by this authorTimothy N. Stockdale, Timothy N. Stockdale European Centre for Medium-Range Weather Forecasts, Reading, UKSearch for more papers by this author Book Editor(s):Michael J. McPhaden, Michael J. McPhadenSearch for more papers by this authorAgus Santoso, Agus SantosoSearch for more papers by this authorWenju Cai, Wenju CaiSearch for more papers by this author First published: 23 October 2020 https://doi.org/10.1002/9781119548164.ch10Citations: 2Book Series:Geophysical Monograph Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat Summary The El Niño-Southern Oscillation (ENSO) is a coupled ocean-atmosphere phenomenon of variability that is a leading source of seasonal climate prediction skill across the globe. The first ENSO prediction was made in the mid-1970s, but it was another 10–15 years before operational centers, using simple, coupled climate models, began to make routine ENSO predictions. These early forecast models were succeeded in the 1990s by more sophisticated dynamical and statistical models, which created the basis for real-time seasonal outlooks over the globe. These models, and more recent multimodel ensembles, also inform our understanding and estimates of the predictability and prediction skill of ENSO, which varies seasonally and from decade to decade. ENSO predictability largely stems from slowly evolving oceanic conditions, with short-term atmospheric fluctuations often limiting predictability on seasonal timescales. Despite improved models and better initializations, prediction skill remains low for forecasts passing through the boreal spring, the so-called spring prediction barrier. Furthermore, prediction skill and predictability have varied significantly over the past couple decades. Higher skill and predictability are evident during periods of larger amplitude ENSO events (e.g., Eastern Pacific El Niño), whereas lower skill/predictability is associated with lower amplitude events (e.g., Central Pacific El Niño). These natural variations in our ability to predict ENSO, together with challenges during 2014–2016, motivate the search for understanding of how anthropogenic warming will influence seasonal ENSO prediction. Citing Literature El Niño Southern Oscillation in a Changing Climate RelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
赘婿应助面包采纳,获得10
2秒前
2秒前
Yanan_Z发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
阿吉完成签到,获得积分10
3秒前
QH应助LucienS采纳,获得10
4秒前
穆振家完成签到,获得积分10
5秒前
米奇马奥斯完成签到,获得积分10
5秒前
6秒前
8秒前
D1fficulty发布了新的文献求助10
9秒前
9秒前
领导范儿应助出门右转采纳,获得10
9秒前
麻果发布了新的文献求助10
10秒前
11秒前
Www完成签到,获得积分10
11秒前
核桃发布了新的文献求助10
12秒前
zzzzzy发布了新的文献求助10
12秒前
13秒前
宇文书翠完成签到,获得积分10
14秒前
XHH1994发布了新的文献求助10
14秒前
123444发布了新的文献求助10
14秒前
14秒前
大王完成签到,获得积分10
14秒前
香蕉晓曼完成签到,获得积分10
15秒前
psybrain9527完成签到,获得积分10
16秒前
gulllluuuukk完成签到,获得积分10
16秒前
典雅的丹寒完成签到,获得积分10
17秒前
wyvern114完成签到,获得积分10
17秒前
17秒前
所所应助好好学习采纳,获得10
18秒前
大王发布了新的文献求助10
18秒前
陈隆发布了新的文献求助10
19秒前
DijiaXu应助chili采纳,获得10
19秒前
我是老大应助chili采纳,获得10
19秒前
李健应助小董采纳,获得10
20秒前
20秒前
小核桃完成签到,获得积分10
20秒前
连仁兄发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970172
求助须知:如何正确求助?哪些是违规求助? 3514982
关于积分的说明 11176568
捐赠科研通 3250212
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875702
科研通“疑难数据库(出版商)”最低求助积分说明 805004