Direct photogrammetry with multispectral imagery for UAV-based snow depth estimation

摄影测量学 遥感 多光谱图像 地形 由运动产生的结构 环境科学 VNIR公司 均方误差 像素 计算机科学 地理 气象学 人工智能 地图学 高光谱成像 数学 运动估计 统计
作者
Kathrin Maier,Andrea Nascetti,Ward van Pelt,Gunhild Rosqvist
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 1-18 被引量:11
标识
DOI:10.1016/j.isprsjprs.2022.01.020
摘要

More accurate snow quality predictions are needed to economically and socially support communities in a changing Arctic environment. This contrasts with the current availability of affordable and efficient snow monitoring methods. In this study, a novel approach is presented to determine spatial snow depth distribution in challenging alpine terrain that was tested during a field campaign performed in the Tarfala valley, Kebnekaise mountains, northern Sweden, in April 2019. The combination of a multispectral camera and an Unmanned Aerial Vehicle (UAV) was used to derive three-dimensional (3D) snow surface models via Structure from Motion (SfM) with direct georeferencing. The main advantage over conventional photogrammetric surveys is the utilization of accurate Real-Time Kinematic (RTK) positioning which enables direct georeferencing of the images, and therefore eliminates the need for ground control points. The proposed method is capable of producing high-resolution 3D snow-covered surface models (<7 cm/pixel) of alpine areas up to eight hectares in a fast, reliable and affordable way. The test sites' average snow depth was 160 cm with an average standard deviation of 78 cm. The overall Root-Mean-Square Errors (RMSE) of the snow depth range from 11.52 cm for data acquired in ideal surveying conditions to 41.03 cm in aggravated light and wind conditions. Results of this study suggest that the red components in the electromagnetic spectrum, i.e., the red, red edge, and near-infrared (NIR) band, contain the majority of information used in photogrammetric processing. The experiments highlighted a significant influence of the multi-spectral imagery on the quality of the final snow depth estimation as well as a strong potential to reduce processing times and computational resources by limiting the dimensionality of the imagery through the application of a Principal Component Analysis (PCA) before the photogrammetric 3D reconstruction. The proposed method is part of closing the scale gap between discrete point measurements and regional-scale remote sensing and complements large-scale remote sensing data and snow model output with an adequate validation source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
buno应助yuefeng采纳,获得10
1秒前
yiming完成签到,获得积分10
1秒前
落落发布了新的文献求助10
2秒前
清秋若月完成签到 ,获得积分10
2秒前
2秒前
呵呵呵呵完成签到,获得积分10
3秒前
3秒前
远方发布了新的文献求助10
4秒前
zxc111关注了科研通微信公众号
4秒前
5秒前
nanhe698发布了新的文献求助10
5秒前
Huang完成签到,获得积分10
5秒前
碳土不凡完成签到 ,获得积分10
6秒前
6秒前
淡淡采白发布了新的文献求助10
7秒前
7秒前
8秒前
Akim应助dingdong采纳,获得10
8秒前
8秒前
8秒前
satchzhao发布了新的文献求助10
8秒前
可爱的函函应助尺素寸心采纳,获得10
8秒前
66发布了新的文献求助10
9秒前
一鸣完成签到,获得积分10
9秒前
9秒前
ding应助呵呵呵呵采纳,获得10
9秒前
9秒前
汉堡包应助hkxfg采纳,获得10
11秒前
12秒前
sw完成签到,获得积分10
12秒前
没有神的过往完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
15秒前
芋圆不圆完成签到,获得积分10
16秒前
招财不肥发布了新的文献求助10
17秒前
zxc111发布了新的文献求助10
17秒前
魔幻的从梦完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808