Disentangling Style and Speaker Attributes for TTS Style Transfer

计算机科学 语音识别 风格(视觉艺术) 失真(音乐) 一致性(知识库) 人工神经网络 判别式 人工智能
作者
Xiaochun An,Frank K. Soong,Lei Xie
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/taslp.2022.3145297
摘要

End-to-end neural TTS has shown improved performance in speech style transfer. However, the improvement is still limited by the available training data in both target styles and speakers. Additionally, degenerated performance is observed when the trained TTS tries to transfer the speech to a target style from a new speaker with an unknown, arbitrary style. In this paper, we propose a new approach to seen and unseen style transfer training on disjoint, multi-style datasets, i.e., datasets of different styles are recorded, one individual style by one speaker in multiple utterances. An inverse autoregressive flow (IAF) technique is first introduced to improve the variational inference for learning an expressive style representation. A speaker encoder network is then developed for learning a discriminative speaker embedding, which is jointly trained with the rest neural TTS modules. The proposed approach of seen and unseen style transfer is effectively trained with six specifically-designed objectives: reconstruction loss, adversarial loss, style distortion loss, cycle consistency loss, style classification loss, and speaker classification loss. Experiments demonstrate, both objectively and subjectively, the effectiveness of the proposed approach for seen and unseen style transfer tasks. The performance of our approach is superior to and more robust than those of four other reference systems of prior art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
zhaolin发布了新的文献求助10
6秒前
自由雪菲力完成签到,获得积分10
7秒前
南岸发布了新的文献求助10
8秒前
袁海燕完成签到,获得积分10
11秒前
钢铁加鲁鲁完成签到,获得积分10
11秒前
春花完成签到,获得积分10
12秒前
123456完成签到 ,获得积分10
12秒前
伶俐的火完成签到 ,获得积分10
14秒前
15秒前
Ava应助xiaoyu采纳,获得10
16秒前
16秒前
17秒前
CodeCraft应助南岸采纳,获得30
17秒前
watefa发布了新的文献求助10
19秒前
yyyy完成签到 ,获得积分10
19秒前
keyanlv完成签到,获得积分10
19秒前
认真之槐完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
25秒前
迷人灵发布了新的文献求助10
28秒前
南岸发布了新的文献求助10
31秒前
WLL完成签到,获得积分10
33秒前
红烧肉耶完成签到 ,获得积分10
36秒前
猪猪hero完成签到,获得积分0
39秒前
43秒前
南枝焙雪完成签到 ,获得积分10
43秒前
43秒前
西柚完成签到 ,获得积分10
44秒前
背后的万声完成签到 ,获得积分10
45秒前
酷酷的紫南完成签到 ,获得积分10
45秒前
xiaoyu给xiaoyu的求助进行了留言
49秒前
量子星尘发布了新的文献求助10
50秒前
秋秋完成签到,获得积分10
54秒前
54秒前
量子星尘发布了新的文献求助10
56秒前
56秒前
57秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796234
求助须知:如何正确求助?哪些是违规求助? 5774346
关于积分的说明 15491518
捐赠科研通 4923263
什么是DOI,文献DOI怎么找? 2650269
邀请新用户注册赠送积分活动 1597506
关于科研通互助平台的介绍 1552100