迭代学习控制
火车
正确性
参数统计
控制理论(社会学)
弹道
点(几何)
计算机科学
风速
点对点
控制(管理)
工程类
数学优化
控制工程
算法
数学
人工智能
统计
地图学
物理
气象学
计算机网络
几何学
地理
天文
作者
Zhenxuan Li,Zhongsheng Hou,Ruikun Zhang,Chenkun Yin
摘要
Abstract In this paper, a point‐to‐point iterative learning control strategy for a cascaded multibody high‐speed train (HST) system with model uncertainty and external disturbance is designed to address a specified given desired points tracking problem. The proposed method, which only used desired point information rather than whole trajectory information, is used to improve the multiple‐point tracking accuracy by enjoying the repetitiveness of an HST. A norm‐optimal method is employed in the ILC operating framework to analyze the HST model with parametric uncertainties and external disturbances. Both a rigorous mathematical analysis and detailed simulation results confirm the correctness and effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI