MS-IDF: A Software Tool for Nontargeted Identification of Endogenous Metabolites after Chemical Isotope Labeling Based on a Narrow Mass Defect Filter

代谢组学 化学 质谱法 色谱法 软件 滤波器(信号处理) 计算机科学 计算机视觉 程序设计语言
作者
Suping Wang,Xiaojuan Jiang,Rong Ding,Binbin Chen,Haiyan Lyu,Junyang Liu,Chunyan Zhu,Rong Shen,Jiayun Chen,Hong Yun,Yun‐Long Wu,Jiyang Dong,Caisheng Wu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (7): 3194-3202 被引量:12
标识
DOI:10.1021/acs.analchem.1c04719
摘要

Chemical isotope labeling liquid chromatography mass spectrometry (LC-MS) is an emerging metabolomic strategy for the quantification and characterization of small molecular compounds in biological samples. However, its subsequent data analysis is not straightforward due to a large amount of data produced and interference of biological matrices. In order to improve the efficiency of searching and identification of target endogenous metabolites, a new software tool for nontargeted metabolomics data processing called MS-IDF was developed based on the principle of a narrow mass defect filter. The developed tool provided two function modules, including IsoFinder and MDFinder. The IsoFinder function module applied a conventional peak extraction method by using a fixed mass differences between the heavy and light labels and by the alignment of chromatographic retention time (RT). On the other hand, MDFinder was designed to incorporate the accurate mass defect differences between or among stable isotopes in the peak extraction process. By setting an appropriate filter interval, the target metabolites can be efficiently screened out while eliminating interference. Notably, the present results showed that the efficiency in compound identification using the new MDFinder module was nearly doubled as compared to the conventional IsoFinder method (an increase from 259 to 423 compounds). The Matlab codes of the developed MS-IDF software are available from github at https://github.com/jydong2018/MS_IDF. Based on the MS-IDF software tool, a novel and effective approach from nontargeted to targeted metabolomics research was developed and applied to the exploration of potential primary amine biomarkers in patients with schizophrenia. With this approach, potential biomarkers, including N,N-dimethylglycine, S-adenosine-l-methionine, dl-homocysteine, and spermidine, were discovered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Deerlu完成签到,获得积分10
刚刚
群q发布了新的文献求助10
1秒前
KAKA完成签到,获得积分10
2秒前
小二郎应助虚心依琴采纳,获得10
2秒前
快乐风松发布了新的文献求助200
3秒前
3秒前
无可反驳发布了新的文献求助10
4秒前
4秒前
5秒前
斯文败类应助123采纳,获得10
6秒前
KAKA发布了新的文献求助10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
立冬发布了新的文献求助10
8秒前
LIZ完成签到 ,获得积分10
9秒前
YOOO发布了新的文献求助10
9秒前
Hello应助研究啥采纳,获得10
10秒前
YUYU完成签到,获得积分10
10秒前
斯文败类应助迷路雨寒采纳,获得30
10秒前
李爱国应助mzmz采纳,获得10
11秒前
伶俐笑翠发布了新的文献求助10
11秒前
11秒前
kiminonawa应助读书的时候采纳,获得10
11秒前
12秒前
14秒前
浮游应助X_X采纳,获得10
14秒前
月见清和发布了新的文献求助10
15秒前
15秒前
17秒前
fairy发布了新的文献求助10
17秒前
17秒前
英俊的铭应助kk采纳,获得10
21秒前
所所应助xia采纳,获得10
22秒前
平生欢完成签到 ,获得积分10
22秒前
22秒前
22秒前
深情安青应助1233采纳,获得10
23秒前
Gaolongzhen完成签到 ,获得积分10
23秒前
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694056
求助须知:如何正确求助?哪些是违规求助? 5095485
关于积分的说明 15212871
捐赠科研通 4850756
什么是DOI,文献DOI怎么找? 2601983
邀请新用户注册赠送积分活动 1553785
关于科研通互助平台的介绍 1511770