Real-Time 3D Single Object Tracking With Transformer

计算机科学 人工智能 点云 变压器 计算机视觉 对象(语法) 视频跟踪 实时计算 工程类 电气工程 电压
作者
Jiayao Shan,Sifan Zhou,Yubo Cui,Zheng Fang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2339-2353 被引量:24
标识
DOI:10.1109/tmm.2022.3146714
摘要

LiDAR-based 3D single object tracking is a challenging issue in robotics and autonomous driving. Currently, existing approaches usually suffer from the problem that objects at long distance often have very sparse or partially-occluded point clouds, which makes the features extracted by the model ambiguous. Ambiguous features will make it hard to locate the target object and finally lead to bad tracking results. To solve this problem, we utilize the powerful Transformer architecture and propose a Point-Track-Transformer (PTT) module for point cloud-based 3D single object tracking task. Specifically, PTT module generates fine-tuned attention features by computing attention weights, which guides the tracker focusing on the important features of the target and improves the tracking ability in complex scenarios. To evaluate our PTT module, we embed PTT into the dominant method and construct a novel 3D SOT tracker named PTT-Net. In PTT-Net, we embed PTT into the voting stage and proposal generation stage, respectively. PTT module in the voting stage could model the interactions among point patches, which learns context-dependent features. Meanwhile, PTT module in the proposal generation stage could capture the contextual information between object and background. We evaluate our PTT-Net on KITTI and NuScenes datasets. Experimental results demonstrate the effectiveness of PTT module and the superiority of PTT-Net, which surpasses the baseline by a noticeable margin, $\sim$ 10% in the Car category. Meanwhile, our method also has a significant performance improvement in sparse scenarios. In general, the combination of transformer and tracking pipeline enables our PTT-Net to achieve state-of-the-art performance on both two datasets. Additionally, PTT-Net could run in real-time at 40FPS on NVIDIA 1080Ti GPU. Our code is open-sourced for the research community at https://github.com/shanjiayao/PTT .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
汉堡包应助德尔塔捱斯采纳,获得10
2秒前
上官若男应助sjf采纳,获得10
3秒前
SciGPT应助dsaifjs采纳,获得10
4秒前
呆萌孤容发布了新的文献求助10
6秒前
6秒前
smile~发布了新的文献求助10
7秒前
9秒前
9秒前
领导范儿应助达瓦里氏采纳,获得10
9秒前
乐乐应助缓缓矛盾体采纳,获得10
10秒前
乐乐应助evy采纳,获得10
11秒前
11秒前
11秒前
小蘑菇应助火星上问柳采纳,获得20
12秒前
practice发布了新的文献求助10
12秒前
Tracy发布了新的文献求助10
13秒前
13秒前
leslie发布了新的文献求助10
14秒前
达奈林完成签到,获得积分20
15秒前
欢呼忆丹发布了新的文献求助10
15秒前
16秒前
16秒前
8R60d8应助喵总采纳,获得10
16秒前
xh发布了新的文献求助10
17秒前
12发布了新的文献求助10
18秒前
18秒前
等待的士晋完成签到 ,获得积分10
18秒前
18秒前
德尔塔捱斯完成签到,获得积分10
18秒前
20秒前
科研通AI2S应助从容的慕山采纳,获得10
20秒前
smile~完成签到,获得积分20
21秒前
达瓦里氏发布了新的文献求助10
22秒前
TenerifeSea发布了新的文献求助10
22秒前
22秒前
22秒前
斯文败类应助BruceYuan采纳,获得10
22秒前
23秒前
evy发布了新的文献求助10
23秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142067
求助须知:如何正确求助?哪些是违规求助? 2793006
关于积分的说明 7805015
捐赠科研通 2449359
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291