Real-Time 3D Single Object Tracking With Transformer

计算机科学 人工智能 点云 变压器 计算机视觉 对象(语法) 视频跟踪 实时计算 工程类 电气工程 电压
作者
Jiayao Shan,Sifan Zhou,Yubo Cui,Zheng Fang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2339-2353 被引量:24
标识
DOI:10.1109/tmm.2022.3146714
摘要

LiDAR-based 3D single object tracking is a challenging issue in robotics and autonomous driving. Currently, existing approaches usually suffer from the problem that objects at long distance often have very sparse or partially-occluded point clouds, which makes the features extracted by the model ambiguous. Ambiguous features will make it hard to locate the target object and finally lead to bad tracking results. To solve this problem, we utilize the powerful Transformer architecture and propose a Point-Track-Transformer (PTT) module for point cloud-based 3D single object tracking task. Specifically, PTT module generates fine-tuned attention features by computing attention weights, which guides the tracker focusing on the important features of the target and improves the tracking ability in complex scenarios. To evaluate our PTT module, we embed PTT into the dominant method and construct a novel 3D SOT tracker named PTT-Net. In PTT-Net, we embed PTT into the voting stage and proposal generation stage, respectively. PTT module in the voting stage could model the interactions among point patches, which learns context-dependent features. Meanwhile, PTT module in the proposal generation stage could capture the contextual information between object and background. We evaluate our PTT-Net on KITTI and NuScenes datasets. Experimental results demonstrate the effectiveness of PTT module and the superiority of PTT-Net, which surpasses the baseline by a noticeable margin, $\sim$ 10% in the Car category. Meanwhile, our method also has a significant performance improvement in sparse scenarios. In general, the combination of transformer and tracking pipeline enables our PTT-Net to achieve state-of-the-art performance on both two datasets. Additionally, PTT-Net could run in real-time at 40FPS on NVIDIA 1080Ti GPU. Our code is open-sourced for the research community at https://github.com/shanjiayao/PTT .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhang完成签到,获得积分10
刚刚
vvvv发布了新的文献求助30
刚刚
暄anbujun发布了新的文献求助10
1秒前
SYLH应助阿宋采纳,获得30
4秒前
反方向的枫完成签到,获得积分10
6秒前
一梦三四年完成签到 ,获得积分10
7秒前
暄anbujun完成签到,获得积分10
8秒前
幕白okk完成签到,获得积分10
9秒前
9秒前
10秒前
哌替啶发布了新的文献求助20
10秒前
花花完成签到,获得积分10
13秒前
15秒前
15秒前
Zirong发布了新的文献求助10
16秒前
雅典的宠儿完成签到 ,获得积分10
16秒前
19秒前
banlu发布了新的文献求助10
20秒前
天天快乐应助单纯天晴采纳,获得10
20秒前
向东东发布了新的文献求助10
21秒前
苯偶姻完成签到 ,获得积分10
21秒前
eliseo完成签到 ,获得积分10
21秒前
玖文发布了新的文献求助10
23秒前
佳佳应助向美而死采纳,获得10
25秒前
26秒前
27秒前
28秒前
木柟完成签到,获得积分10
28秒前
Bear完成签到 ,获得积分10
29秒前
玖文完成签到,获得积分10
29秒前
彭于晏应助专注乌冬面采纳,获得10
31秒前
31秒前
云氲完成签到 ,获得积分10
31秒前
tangz完成签到,获得积分20
32秒前
32秒前
33秒前
含蓄元冬发布了新的文献求助10
33秒前
33秒前
iNk应助秀丽笑容采纳,获得20
35秒前
keeno完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966388
求助须知:如何正确求助?哪些是违规求助? 3511817
关于积分的说明 11160082
捐赠科研通 3246443
什么是DOI,文献DOI怎么找? 1793422
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388