范德瓦尔斯力
表面张力
位阻效应
电子受体
化学
分子
化学物理
极地的
水溶液
电子供体
材料科学
化学工程
有机化学
热力学
物理
天文
催化作用
工程类
作者
Carel J. van Oss,Manoj K. Chaudhury,Robert J. Good
标识
DOI:10.1016/0001-8686(87)80008-8
摘要
Following the development of a methodology for determining the apolar components as well as the electron donor and the electron acceptor parameters of the surface tension of polar surfaces, surfaces of a number of quite common materials were found to manifest virtually only electron donor properties and no, or hardly, any electron acceptor properties. Such materials may be called monopolar; they can strongly interact with bipolar materials (e.g., with polar liquids such as water); but one single polar parameter of a monopolar material cannot contribute to its energy of cohesion. Monopolar materials manifesting only electron acceptor properties also may exist, but they do not appear to occur in as great an abundance. Among the electron donor monopolar materials are: polymethylmethacrylate, polyvinylalcohol, polyethyleneglycol, proteins, many polysaccharides, phospholipids, nonionic surfactants, cellulose esters, etc. Strongly monopolar materials of the same sign repel each other when immersed or dissolved in water or other polar liquids. The interfacial tension between strongly monopolar surfaces and water has a negative value. This leads to a tendency for water to penetrate between facing surfaces of a monopolar substance and hence, to repulsion between the molecules or particles of such a monopolar material, when immersed in water, and thus to pronounced solubility or dispersibility. Monopolar repulsion energies can far outweigh Lifshitz-van der Waals attractions as well as electrostatic and “steric” repulsions. In aqueous systems the commonly observed stabilization effects, which usually are ascribed to “steric” stabilization, may in many instances be attributed to monopolar repulsion between nonionic stabilizing molecules. The repulsion between monopolar molecules of the same sign can also lead to phase separation in aqueous solutions (or suspensions), where not only two, but multiple phases are possible. Negative interfacial tensions between monopolar surfactants and the brine phase can be the driving force for the formation of microemulsions; such negative interfacial tensions ultimately decay and stabilize at a value very close to zero. Strongly monopolar macromolecules or particles surrounded by oriented water molecules of hydration can still repel each other, albeit to an attenuated degree. This repulsion was earlier perceived as caused by “hydration pressure”. A few of the relevant colloid and surface phenomena are reviewed and re-examined in the light of the influence of surface monopolarity on these phenomena.
科研通智能强力驱动
Strongly Powered by AbleSci AI