柯肯德尔效应
成核
纳米颗粒
材料科学
氧化物
纳米尺度
空位缺陷
纳米技术
空隙(复合材料)
扫描透射电子显微镜
电子能量损失谱
化学物理
透射电子显微镜
扫描电子显微镜
化学工程
化学
结晶学
冶金
复合材料
有机化学
工程类
作者
Sara Nilsson,Mie Femø Nielsen,Joachim Fritzsche,Christoph Langhammer,Shima Kadkhodazadeh
出处
期刊:Research Square - Research Square
日期:2022-01-20
标识
DOI:10.21203/rs.3.rs-1148708/v1
摘要
Abstract Metals are prone to oxidation, which often results in significant changes to optical, electronic, chemical and mechanical properties in bulk systems. Nanoparticles are no exception in this respect but a holistic understanding of the mechanisms governing their oxidation is lacking. Here, we capture in situ the oxidation of single Cu nanoparticles to unravel a sequential competitive activation of different oxidation mechanisms at temperatures between 50 and 200°C. Using environmental scanning transmission electron microscopy, we reveal the morphological evolution of oxide formation in detail and identify the formation of multiple oxide layers separated by a vacancy gap. Moreover, using in situ electron energy-loss spectroscopy, we map the plasmonic response of individual particles induced by oxidation, and reveal generic geometrical pathways for nanoscale Kirkendall void nucleation and growth that are driven by surface energy minimization. Based on these insights, we uncover the mechanistic pathway of Cu nanoparticle oxidation.
科研通智能强力驱动
Strongly Powered by AbleSci AI