材料科学
缩进
金属
Crystal(编程语言)
结晶学
凝聚态物理
晶体结构
晶体塑性
物理
可塑性
计算机科学
化学
复合材料
冶金
程序设计语言
作者
Chang Liu,Xinlei Gu,Kan Zhang,Weitao Zheng,Yanming Ma,Changfeng Chen
出处
期刊:Physical review
日期:2022-01-10
卷期号:105 (2)
被引量:14
标识
DOI:10.1103/physrevb.105.024105
摘要
We predict then produce superhard metallic compound ${\mathrm{TaB}}_{2}$ via exploring crystal orientation resolved stress-strain relations. First-principles calculations identify prominent strain stiffening that generates superhigh indentation strengths of 46--49 GPa in the (001) oriented ${\mathrm{TaB}}_{2}$ crystal; in sharp contrast, dynamic instability diminishes strain stiffening even causes softening, leading to notably lower strengths around 30 GPa in the (110) and (100) orientations. Ensuing experimental synthesis creates well crystallized and textured (001) oriented ${\mathrm{TaB}}_{2}$ that exhibits indentation hardness of 45.9 GPa and electrical resistivity of $1.71\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}\phantom{\rule{4pt}{0ex}}\mathrm{\ensuremath{\Omega}}\phantom{\rule{0.16em}{0ex}}\mathrm{m}$, validating key superhard and metallic benchmarks. The present findings showcase an enabling protocol of crystal configuration engineering for selective property optimization, opening a path for rational design and discovery of long-sought but hitherto scarcely produced superhard metallic materials among vast transition-metal compounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI