Risk Quantification for Automated Driving Systems in Real-World Driving Scenarios

计算机科学 风险分析(工程) 撞车 风险评估 汽车工业 碰撞 可靠性工程 计算机安全 工程类 业务 程序设计语言 航空航天工程
作者
Erwin de Gelder,Hala Elrofai,Arash Khabbaz Saberi,Jan‐Pieter Paardekooper,Olaf Op den Camp,Bart De Schutter
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 168953-168970 被引量:21
标识
DOI:10.1109/access.2021.3136585
摘要

The development of safety validation methods is essential for the safe deployment and operation of Automated Driving Systems (ADSs). One of the goals of safety validation is to prospectively evaluate the risk of an ADS dealing with real-world traffic. ISO 26262 and ISO/DIS 21448, the leading standards in automotive safety, provide an approach to estimate the risk where the former focuses on risks due to potential malfunctioning of components and the latter focuses on risks due to possible functional insufficiencies. The main shortcomings of the approach provided in ISO 26262 are that it depends on subjective judgments of safety experts and that only a qualitative risk estimation is performed. ISO/DIS 21448 addresses these shortcomings partially by providing statistical methods to guide the safety validation, but no complete method is provided to quantify the risk. The first objective of this article is to propose a method to estimate the risk of an ADS in a more quantitative and objective manner. A data-driven approach is used to rely less on subjective judgments of safety experts. The output of the method is the expected number of injuries in a potential collision. Thus, the method is quantitative, the result is easily interpretable, and the result can be compared with road crash statistics. The second objective is to provide a method that supports the risk assessment as stipulated by the ISO 26262 and ISO/DIS 21448 standards by decomposing the quantified risk into the 3 aspects of risk as mentioned in these standards: exposure, severity, and controllability. The proposed methods are illustrated by means of a case study in which the risk is quantified for a longitudinal controller in 3 different types of scenarios. The code of the case study is publicly available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助忧郁丹彤采纳,获得10
刚刚
sunshine发布了新的文献求助10
刚刚
Sandy完成签到,获得积分10
1秒前
SunnyLife完成签到,获得积分10
1秒前
科研通AI6应助xc采纳,获得10
1秒前
画檐蛛网发布了新的文献求助10
1秒前
无极微光应助violenceee采纳,获得20
1秒前
fyy完成签到,获得积分20
2秒前
Lee发布了新的文献求助10
3秒前
一YI发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
卤蛋发布了新的文献求助10
5秒前
zi完成签到,获得积分10
5秒前
HH完成签到,获得积分10
5秒前
sdd211发布了新的文献求助10
5秒前
花椒发布了新的文献求助10
6秒前
6秒前
无聊的天空完成签到,获得积分10
7秒前
7秒前
靓丽不评发布了新的文献求助10
7秒前
asdfzxcv应助尊敬的寄松采纳,获得10
7秒前
哔哩哔哩往上爬完成签到,获得积分10
7秒前
8秒前
情怀应助phonon采纳,获得10
8秒前
任性子骞完成签到,获得积分10
8秒前
小蘑菇应助文静金针菇采纳,获得10
8秒前
晒太阳的过客完成签到,获得积分10
8秒前
糖糖谈糖糖完成签到,获得积分10
9秒前
Lee发布了新的文献求助10
9秒前
苏硕完成签到,获得积分20
9秒前
科研通AI6应助一YI采纳,获得10
9秒前
orixero应助yanzilin采纳,获得10
10秒前
傻傻的香菱完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
xixi789完成签到,获得积分0
10秒前
Leety完成签到 ,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645776
求助须知:如何正确求助?哪些是违规求助? 4769743
关于积分的说明 15032036
捐赠科研通 4804514
什么是DOI,文献DOI怎么找? 2569056
邀请新用户注册赠送积分活动 1526123
关于科研通互助平台的介绍 1485700