Instance Correlation Graph for Unsupervised Domain Adaptation

计算机科学 相关性 模式识别(心理学) 域适应 质心 人工智能 图形 机器学习 数据挖掘 理论计算机科学 数学 几何学 分类器(UML)
作者
Lei Wu,Hefei Ling,Yuxuan Shi,Baiyan Zhang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:18 (1s): 1-23 被引量:7
标识
DOI:10.1145/3486251
摘要

In recent years, deep neural networks have emerged as a dominant machine learning tool for a wide variety of application fields. Due to the expensive cost of manual labeling efforts, it is important to transfer knowledge from a label-rich source domain to an unlabeled target domain. The core problem is how to learn a domain-invariant representation to address the domain shift challenge, in which the training and test samples come from different distributions. First, considering the geometry of space probability distributions, we introduce an effective Hellinger Distance to match the source and target distributions on statistical manifold. Second, the data samples are not isolated individuals, and they are interrelated. The correlation information of data samples should not be neglected for domain adaptation. Distinguished from previous works, we pay attention to the correlation distributions over data samples. We design elaborately a Residual Graph Convolutional Network to construct the Instance Correlation Graph (ICG). The correlation information of data samples is exploited to reduce the domain shift. Therefore, a novel Instance Correlation Graph for Unsupervised Domain Adaptation is proposed, which is trained end-to-end by jointly optimizing three types of losses, i.e., Supervised Classification loss for source domain, Centroid Alignment loss to measure the centroid difference between source and target domain, ICG Alignment loss to match Instance Correlation Graph over two related domains. Extensive experiments are conducted on several hard transfer tasks to learn domain-invariant representations on three benchmarks: Office-31, Office-Home, and VisDA2017. Compared with other state-of-the-art techniques, our method achieves superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
喵总完成签到,获得积分10
2秒前
烂漫的易蓉完成签到,获得积分10
2秒前
库凯伊完成签到,获得积分10
2秒前
3秒前
HAY发布了新的文献求助10
4秒前
栗子完成签到,获得积分10
4秒前
花花发布了新的文献求助10
5秒前
5秒前
李生完成签到,获得积分10
5秒前
852应助华贞采纳,获得10
5秒前
6秒前
7秒前
温柔薯条给温柔薯条的求助进行了留言
8秒前
郑石发布了新的文献求助10
8秒前
11秒前
11秒前
满眼星辰发布了新的文献求助10
11秒前
研友_VZG7GZ应助叶子采纳,获得30
13秒前
14秒前
14秒前
霸气的小兔子完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
糖果苏扬完成签到 ,获得积分10
17秒前
18秒前
19秒前
19秒前
壮观的大山完成签到,获得积分20
19秒前
zhong完成签到,获得积分10
20秒前
ZengQiu发布了新的文献求助10
20秒前
难过飞瑶发布了新的文献求助10
21秒前
lzx完成签到,获得积分10
22秒前
nadiaaa发布了新的文献求助10
24秒前
Nan应助ZengQiu采纳,获得10
24秒前
传奇3应助ZengQiu采纳,获得10
24秒前
单纯的文龙完成签到,获得积分10
25秒前
科研通AI2S应助木虫采纳,获得10
26秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269474
求助须知:如何正确求助?哪些是违规求助? 2909017
关于积分的说明 8347691
捐赠科研通 2579253
什么是DOI,文献DOI怎么找? 1402733
科研通“疑难数据库(出版商)”最低求助积分说明 655478
邀请新用户注册赠送积分活动 634763