Instance Correlation Graph for Unsupervised Domain Adaptation

计算机科学 相关性 模式识别(心理学) 域适应 质心 人工智能 图形 机器学习 数据挖掘 理论计算机科学 数学 几何学 分类器(UML)
作者
Lei Wu,Hefei Ling,Yuxuan Shi,Baiyan Zhang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:18 (1s): 1-23 被引量:7
标识
DOI:10.1145/3486251
摘要

In recent years, deep neural networks have emerged as a dominant machine learning tool for a wide variety of application fields. Due to the expensive cost of manual labeling efforts, it is important to transfer knowledge from a label-rich source domain to an unlabeled target domain. The core problem is how to learn a domain-invariant representation to address the domain shift challenge, in which the training and test samples come from different distributions. First, considering the geometry of space probability distributions, we introduce an effective Hellinger Distance to match the source and target distributions on statistical manifold. Second, the data samples are not isolated individuals, and they are interrelated. The correlation information of data samples should not be neglected for domain adaptation. Distinguished from previous works, we pay attention to the correlation distributions over data samples. We design elaborately a Residual Graph Convolutional Network to construct the Instance Correlation Graph (ICG). The correlation information of data samples is exploited to reduce the domain shift. Therefore, a novel Instance Correlation Graph for Unsupervised Domain Adaptation is proposed, which is trained end-to-end by jointly optimizing three types of losses, i.e., Supervised Classification loss for source domain, Centroid Alignment loss to measure the centroid difference between source and target domain, ICG Alignment loss to match Instance Correlation Graph over two related domains. Extensive experiments are conducted on several hard transfer tasks to learn domain-invariant representations on three benchmarks: Office-31, Office-Home, and VisDA2017. Compared with other state-of-the-art techniques, our method achieves superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子秀完成签到,获得积分10
刚刚
SYLH应助ybb采纳,获得10
1秒前
未成年面包完成签到,获得积分10
1秒前
科研通AI2S应助大梦采纳,获得10
2秒前
林林林完成签到,获得积分10
3秒前
3秒前
龙抬头发布了新的文献求助10
3秒前
王炸完成签到,获得积分10
3秒前
眼睛大忆梅完成签到,获得积分10
3秒前
3秒前
一味愚完成签到,获得积分10
3秒前
4秒前
hahaha完成签到,获得积分10
4秒前
4秒前
开心就好发布了新的文献求助10
5秒前
顺利夏之完成签到 ,获得积分10
5秒前
5秒前
ezvsnoc完成签到,获得积分10
5秒前
红豆发布了新的文献求助10
5秒前
wanci应助齐小明采纳,获得10
5秒前
5秒前
小马甲应助闪闪路人采纳,获得10
6秒前
博士吴发布了新的文献求助10
6秒前
吃好睡好发布了新的文献求助10
6秒前
Petrichor完成签到,获得积分10
7秒前
元宝完成签到,获得积分10
7秒前
ry完成签到,获得积分10
7秒前
科研通AI2S应助洁白的故人采纳,获得10
7秒前
7秒前
Danqi完成签到,获得积分10
7秒前
pakyl发布了新的文献求助10
8秒前
上官若男应助Yy采纳,获得10
8秒前
所所应助勤恳的仰采纳,获得10
8秒前
9秒前
CR7应助DIY101采纳,获得20
9秒前
9秒前
健谈的巧曼完成签到,获得积分10
10秒前
搞怪的易槐完成签到,获得积分10
10秒前
zt1812431172完成签到,获得积分10
10秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016913
求助须知:如何正确求助?哪些是违规求助? 3557067
关于积分的说明 11323667
捐赠科研通 3289813
什么是DOI,文献DOI怎么找? 1812563
邀请新用户注册赠送积分活动 888139
科研通“疑难数据库(出版商)”最低求助积分说明 812136