A single view leaf reconstruction method based on the fusion of ResNet and differentiable render in plant growth digital twin system

渲染(计算机图形) 人工智能 计算机科学 可微函数 三维重建 精准农业 植物生长 模式识别(心理学) 计算机视觉 算法 数学 植物 农业 地理 生物 数学分析 考古
作者
Wei Li,Deli Zhu,Qing Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106712-106712 被引量:16
标识
DOI:10.1016/j.compag.2022.106712
摘要

In modern agriculture, plant growth digital twin system helps breeders monitor plant growth, increase yield, and provide growth management advice. Research on the single view leaf 3D reconstruction in digital twin systems has achieved relative success. However, in traditional single-view reconstruction algorithms, the leaf reconstruction often contains the problems of low precision, achieving complexity, and slow speed, making it difficult for recovering three-dimensional information about leaves. Consequently, the reconstruction precision is significantly reduced, which further affects the accuracy of single-view leaf 3D reconstruction. In response to this problem, this study proposed a single-view leaf reconstruction approach in plant growth digital twin systems based on deep learning. The method in this paper mainly fuses the advantages of ResNet and differentiable rendering, and the model is used for further enhancing feature extraction capability and reconstruction precision. Finally, the experiment presented in this paper suggests that the method allows for the 3D reconstruction of plant leaves with different shapes using a single view. Moreover, the experiment results show that the F-Score, CD, EMD reached 76.192, 0.808, and 3.567. Compared with other models, the proposed model in this study has higher reconstruction accuracy, 3D evaluation indicators, and prediction results, providing important ideas and methods for recovering the leaves from a single view in a plant growth digital twin system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助长风破浪采纳,获得10
1秒前
1秒前
1秒前
彭于晏应助齐齐采纳,获得10
2秒前
2秒前
黄pp发布了新的文献求助10
3秒前
Ava应助DD采纳,获得30
3秒前
朴素定帮发布了新的文献求助10
3秒前
wpp完成签到,获得积分10
4秒前
荣荣liu发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
今后应助Dr.Yang采纳,获得10
6秒前
干鞅发布了新的文献求助10
7秒前
虚拟的人英完成签到,获得积分10
7秒前
李健应助平淡的萤采纳,获得10
7秒前
小新发布了新的文献求助10
7秒前
7秒前
甜甜的粥发布了新的文献求助10
8秒前
科研r发布了新的文献求助10
8秒前
加油小白菜应助黄pp采纳,获得10
9秒前
Yang应助limecho采纳,获得10
9秒前
超帅无血完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
TUYANG完成签到,获得积分10
10秒前
Akim应助加油小白菜采纳,获得10
11秒前
路由器完成签到,获得积分10
11秒前
美丽秋蝶发布了新的文献求助10
11秒前
星辰大海应助瘦瘦的南蕾采纳,获得10
11秒前
顾矜应助意悟采纳,获得10
12秒前
12秒前
机智灵薇完成签到,获得积分10
13秒前
fafamimireredo完成签到,获得积分10
13秒前
爆米花应助碧蓝的迎梦采纳,获得10
13秒前
14秒前
天天快乐应助王明磊采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507092
求助须知:如何正确求助?哪些是违规求助? 4602480
关于积分的说明 14481514
捐赠科研通 4536439
什么是DOI,文献DOI怎么找? 2486173
邀请新用户注册赠送积分活动 1468807
关于科研通互助平台的介绍 1441197