A single view leaf reconstruction method based on the fusion of ResNet and differentiable render in plant growth digital twin system

渲染(计算机图形) 人工智能 计算机科学 可微函数 三维重建 精准农业 植物生长 模式识别(心理学) 计算机视觉 算法 数学 植物 农业 地理 生物 数学分析 考古
作者
Wei Li,Deli Zhu,Qing Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106712-106712 被引量:16
标识
DOI:10.1016/j.compag.2022.106712
摘要

In modern agriculture, plant growth digital twin system helps breeders monitor plant growth, increase yield, and provide growth management advice. Research on the single view leaf 3D reconstruction in digital twin systems has achieved relative success. However, in traditional single-view reconstruction algorithms, the leaf reconstruction often contains the problems of low precision, achieving complexity, and slow speed, making it difficult for recovering three-dimensional information about leaves. Consequently, the reconstruction precision is significantly reduced, which further affects the accuracy of single-view leaf 3D reconstruction. In response to this problem, this study proposed a single-view leaf reconstruction approach in plant growth digital twin systems based on deep learning. The method in this paper mainly fuses the advantages of ResNet and differentiable rendering, and the model is used for further enhancing feature extraction capability and reconstruction precision. Finally, the experiment presented in this paper suggests that the method allows for the 3D reconstruction of plant leaves with different shapes using a single view. Moreover, the experiment results show that the F-Score, CD, EMD reached 76.192, 0.808, and 3.567. Compared with other models, the proposed model in this study has higher reconstruction accuracy, 3D evaluation indicators, and prediction results, providing important ideas and methods for recovering the leaves from a single view in a plant growth digital twin system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艾绒完成签到,获得积分10
1秒前
4秒前
周周完成签到,获得积分10
4秒前
英俊的铭应助漂亮德地采纳,获得10
5秒前
一昂杨完成签到,获得积分10
6秒前
无名指完成签到 ,获得积分10
7秒前
研友_VZG7GZ应助嘎嘎嘎嘎采纳,获得10
7秒前
7秒前
回到原点应助敬老院N号采纳,获得10
7秒前
王灿灿应助胖虎不胖采纳,获得10
8秒前
8秒前
9秒前
bkagyin应助1234采纳,获得10
10秒前
InfoNinja应助1234采纳,获得30
10秒前
Lvwenqi发布了新的文献求助10
10秒前
Singularity应助LL采纳,获得10
10秒前
11秒前
12秒前
12秒前
陈爱佳发布了新的文献求助10
12秒前
12秒前
dwct发布了新的文献求助10
13秒前
宇宙超人007008完成签到,获得积分10
13秒前
明亮的怜寒完成签到,获得积分10
13秒前
zzb发布了新的文献求助20
13秒前
汉堡包应助虎帅采纳,获得10
14秒前
AAAAAAAAAAA发布了新的文献求助10
14秒前
思源应助陈陈采纳,获得10
15秒前
yl发布了新的文献求助10
15秒前
15秒前
16秒前
wanci应助123采纳,获得10
18秒前
马克图布完成签到,获得积分10
18秒前
18秒前
18秒前
喵喵酱发布了新的文献求助10
19秒前
舒适的文博完成签到,获得积分10
20秒前
21秒前
dddy发布了新的文献求助10
21秒前
mabo完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152304
求助须知:如何正确求助?哪些是违规求助? 2803548
关于积分的说明 7854456
捐赠科研通 2461123
什么是DOI,文献DOI怎么找? 1310174
科研通“疑难数据库(出版商)”最低求助积分说明 629138
版权声明 601765