已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A single view leaf reconstruction method based on the fusion of ResNet and differentiable render in plant growth digital twin system

渲染(计算机图形) 人工智能 计算机科学 可微函数 三维重建 精准农业 植物生长 模式识别(心理学) 计算机视觉 算法 数学 植物 农业 地理 生物 数学分析 考古
作者
Wei Li,Deli Zhu,Qing Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106712-106712 被引量:16
标识
DOI:10.1016/j.compag.2022.106712
摘要

In modern agriculture, plant growth digital twin system helps breeders monitor plant growth, increase yield, and provide growth management advice. Research on the single view leaf 3D reconstruction in digital twin systems has achieved relative success. However, in traditional single-view reconstruction algorithms, the leaf reconstruction often contains the problems of low precision, achieving complexity, and slow speed, making it difficult for recovering three-dimensional information about leaves. Consequently, the reconstruction precision is significantly reduced, which further affects the accuracy of single-view leaf 3D reconstruction. In response to this problem, this study proposed a single-view leaf reconstruction approach in plant growth digital twin systems based on deep learning. The method in this paper mainly fuses the advantages of ResNet and differentiable rendering, and the model is used for further enhancing feature extraction capability and reconstruction precision. Finally, the experiment presented in this paper suggests that the method allows for the 3D reconstruction of plant leaves with different shapes using a single view. Moreover, the experiment results show that the F-Score, CD, EMD reached 76.192, 0.808, and 3.567. Compared with other models, the proposed model in this study has higher reconstruction accuracy, 3D evaluation indicators, and prediction results, providing important ideas and methods for recovering the leaves from a single view in a plant growth digital twin system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐的慕山完成签到,获得积分10
1秒前
静静想静静地静静完成签到 ,获得积分10
7秒前
领导范儿应助DPH采纳,获得10
12秒前
14秒前
16秒前
shunbao完成签到,获得积分10
17秒前
DarwinZC发布了新的文献求助10
18秒前
飞快的语蕊完成签到,获得积分10
18秒前
笗一一完成签到 ,获得积分10
24秒前
shunbaopan完成签到,获得积分10
24秒前
25秒前
BASS完成签到,获得积分10
26秒前
华仔应助俊逸如风采纳,获得10
26秒前
杜萌萌发布了新的文献求助10
31秒前
机灵的忆梅完成签到 ,获得积分10
34秒前
脑洞疼应助哆啦A梦采纳,获得10
38秒前
shunbaop完成签到,获得积分10
40秒前
臻灏完成签到,获得积分10
40秒前
隐形曼青应助purplelove采纳,获得30
42秒前
43秒前
白玫瑰完成签到,获得积分20
45秒前
凌涛发布了新的文献求助10
46秒前
在水一方应助yahonyoyoyo采纳,获得10
47秒前
IMIke发布了新的文献求助50
47秒前
白玫瑰发布了新的文献求助10
47秒前
杜萌萌完成签到,获得积分10
50秒前
54秒前
55秒前
55秒前
FashionBoy应助科研通管家采纳,获得10
56秒前
完美世界应助科研通管家采纳,获得10
56秒前
56秒前
酷波er应助科研通管家采纳,获得10
56秒前
FIN应助科研通管家采纳,获得30
56秒前
隐形曼青应助科研通管家采纳,获得10
56秒前
FIN应助科研通管家采纳,获得30
56秒前
56秒前
56秒前
贰鸟应助科研通管家采纳,获得30
56秒前
充电宝应助Yesyes采纳,获得10
58秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959920
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128046
捐赠科研通 3238071
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021