A single view leaf reconstruction method based on the fusion of ResNet and differentiable render in plant growth digital twin system

渲染(计算机图形) 人工智能 计算机科学 可微函数 三维重建 精准农业 植物生长 模式识别(心理学) 计算机视觉 算法 数学 植物 农业 地理 生物 数学分析 考古
作者
Wei Li,Deli Zhu,Qing Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106712-106712 被引量:16
标识
DOI:10.1016/j.compag.2022.106712
摘要

In modern agriculture, plant growth digital twin system helps breeders monitor plant growth, increase yield, and provide growth management advice. Research on the single view leaf 3D reconstruction in digital twin systems has achieved relative success. However, in traditional single-view reconstruction algorithms, the leaf reconstruction often contains the problems of low precision, achieving complexity, and slow speed, making it difficult for recovering three-dimensional information about leaves. Consequently, the reconstruction precision is significantly reduced, which further affects the accuracy of single-view leaf 3D reconstruction. In response to this problem, this study proposed a single-view leaf reconstruction approach in plant growth digital twin systems based on deep learning. The method in this paper mainly fuses the advantages of ResNet and differentiable rendering, and the model is used for further enhancing feature extraction capability and reconstruction precision. Finally, the experiment presented in this paper suggests that the method allows for the 3D reconstruction of plant leaves with different shapes using a single view. Moreover, the experiment results show that the F-Score, CD, EMD reached 76.192, 0.808, and 3.567. Compared with other models, the proposed model in this study has higher reconstruction accuracy, 3D evaluation indicators, and prediction results, providing important ideas and methods for recovering the leaves from a single view in a plant growth digital twin system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故渊完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
张爽发布了新的文献求助20
2秒前
故渊发布了新的文献求助10
4秒前
啊嘞嘞发布了新的文献求助10
5秒前
Amy发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
张献忠发布了新的文献求助10
8秒前
8秒前
325715完成签到,获得积分10
9秒前
学术妲己完成签到,获得积分10
9秒前
李亚楠完成签到,获得积分10
10秒前
ZZY关闭了ZZY文献求助
10秒前
AG杰完成签到 ,获得积分20
11秒前
量子星尘发布了新的文献求助10
13秒前
工艺员发布了新的文献求助10
13秒前
Amy完成签到,获得积分10
14秒前
gww发布了新的文献求助10
15秒前
张献忠完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
16秒前
17秒前
CipherSage应助zerovb3采纳,获得10
17秒前
解语花发布了新的文献求助50
20秒前
20秒前
20秒前
健壮问枫发布了新的文献求助30
21秒前
21秒前
22秒前
缘起缘灭完成签到,获得积分10
24秒前
不烦发布了新的文献求助10
24秒前
xin发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
思源应助mahliya采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590231
求助须知:如何正确求助?哪些是违规求助? 4005083
关于积分的说明 12400271
捐赠科研通 3682147
什么是DOI,文献DOI怎么找? 2029449
邀请新用户注册赠送积分活动 1063022
科研通“疑难数据库(出版商)”最低求助积分说明 948604