Graph Neural Networks

计算机科学 可解释性 人工智能 利用 深度学习 可扩展性 机器学习 图形 理论计算机科学 数据科学 计算机安全 数据库
作者
Lingfei Wu,Peng Cui,Jian Pei,Liang Zhao,Le Song
出处
期刊:Springer Singapore eBooks [Springer Nature]
卷期号:: 27-37 被引量:34
标识
DOI:10.1007/978-981-16-6054-2_3
摘要

Deep Learning has become one of the most dominant approaches in Artificial Intelligence research today. Although conventional deep learning techniques have achieved huge successes on Euclidean data such as images, or sequence data such as text, there are many applications that are naturally or best represented with a graph structure. This gap has driven a tide in research for deep learning on graphs, among them Graph Neural Networks (GNNs) are the most successful in coping with various learning tasks across a large number of application domains. In this chapter, we will systematically organize the existing research of GNNs along three axes: foundations, frontiers, and applications. We will introduce the fundamental aspects of GNNs ranging from the popular models and their expressive powers, to the scalability, interpretability and robustness of GNNs. Then, we will discuss various frontier research, ranging from graph classification and link prediction, to graph generation and transformation, graph matching and graph structure learning. Based on them, we further summarize the basic procedures which exploit full use of various GNNs for a large number of applications. Finally, we provide the organization of our book and summarize the roadmap of the various research topics of GNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的尔竹应助MechaniKer采纳,获得10
刚刚
田様应助周文凯采纳,获得10
刚刚
dove完成签到,获得积分10
刚刚
暄暄大王发布了新的文献求助10
1秒前
a水爱科研发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
高高友桃发布了新的文献求助10
4秒前
4秒前
在水一方应助sunshiying采纳,获得10
5秒前
852应助wang采纳,获得10
5秒前
zhonglv7应助科研通管家采纳,获得10
6秒前
lzhgoashore发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
changping应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
lalala应助科研通管家采纳,获得10
6秒前
香蕉觅云应助懦弱的博涛采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
changping应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
lalala应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
8秒前
月宸发布了新的文献求助10
8秒前
9秒前
Jaden发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400