Graph Neural Networks

计算机科学 可解释性 人工智能 利用 深度学习 可扩展性 机器学习 图形 理论计算机科学 数据科学 计算机安全 数据库
作者
Lingfei Wu,Peng Cui,Jian Pei,Liang Zhao,Le Song
出处
期刊:Springer Singapore eBooks [Springer Nature]
卷期号:: 27-37 被引量:34
标识
DOI:10.1007/978-981-16-6054-2_3
摘要

Deep Learning has become one of the most dominant approaches in Artificial Intelligence research today. Although conventional deep learning techniques have achieved huge successes on Euclidean data such as images, or sequence data such as text, there are many applications that are naturally or best represented with a graph structure. This gap has driven a tide in research for deep learning on graphs, among them Graph Neural Networks (GNNs) are the most successful in coping with various learning tasks across a large number of application domains. In this chapter, we will systematically organize the existing research of GNNs along three axes: foundations, frontiers, and applications. We will introduce the fundamental aspects of GNNs ranging from the popular models and their expressive powers, to the scalability, interpretability and robustness of GNNs. Then, we will discuss various frontier research, ranging from graph classification and link prediction, to graph generation and transformation, graph matching and graph structure learning. Based on them, we further summarize the basic procedures which exploit full use of various GNNs for a large number of applications. Finally, we provide the organization of our book and summarize the roadmap of the various research topics of GNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
薄雪草应助范范采纳,获得10
1秒前
Cola完成签到,获得积分0
1秒前
要减肥的冰姬完成签到,获得积分10
2秒前
3秒前
advance完成签到,获得积分0
4秒前
bkagyin应助RRReol采纳,获得10
4秒前
斯文败类应助carbon采纳,获得10
5秒前
weilong完成签到,获得积分10
5秒前
昵称发布了新的文献求助10
5秒前
5秒前
刘先生发布了新的文献求助10
5秒前
6秒前
阿凉发布了新的文献求助10
6秒前
Elan发布了新的文献求助10
7秒前
Mry发布了新的文献求助10
7秒前
研友_ngJQzL发布了新的文献求助10
8秒前
Luna完成签到 ,获得积分10
8秒前
在秦岭喝豆浆的北极熊完成签到 ,获得积分10
8秒前
tz666666发布了新的文献求助20
9秒前
9秒前
Lz发布了新的文献求助10
9秒前
动听曼荷发布了新的文献求助10
11秒前
ZZZ完成签到,获得积分10
11秒前
上官若男应助kingwill采纳,获得20
12秒前
13秒前
13秒前
一一给一一的求助进行了留言
14秒前
隐形曼青应助胡豆采纳,获得10
14秒前
14秒前
15秒前
16秒前
科目三应助苹果紊采纳,获得10
16秒前
16秒前
Mry完成签到,获得积分10
16秒前
11完成签到,获得积分10
16秒前
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226893
求助须知:如何正确求助?哪些是违规求助? 4398122
关于积分的说明 13688592
捐赠科研通 4262833
什么是DOI,文献DOI怎么找? 2339293
邀请新用户注册赠送积分活动 1336675
关于科研通互助平台的介绍 1292735