Graph Neural Networks

计算机科学 可解释性 人工智能 利用 深度学习 可扩展性 机器学习 图形 理论计算机科学 数据科学 计算机安全 数据库
作者
Lingfei Wu,Peng Cui,Jian Pei,Liang Zhao,Le Song
出处
期刊:Springer Singapore eBooks [Springer Nature]
卷期号:: 27-37 被引量:34
标识
DOI:10.1007/978-981-16-6054-2_3
摘要

Deep Learning has become one of the most dominant approaches in Artificial Intelligence research today. Although conventional deep learning techniques have achieved huge successes on Euclidean data such as images, or sequence data such as text, there are many applications that are naturally or best represented with a graph structure. This gap has driven a tide in research for deep learning on graphs, among them Graph Neural Networks (GNNs) are the most successful in coping with various learning tasks across a large number of application domains. In this chapter, we will systematically organize the existing research of GNNs along three axes: foundations, frontiers, and applications. We will introduce the fundamental aspects of GNNs ranging from the popular models and their expressive powers, to the scalability, interpretability and robustness of GNNs. Then, we will discuss various frontier research, ranging from graph classification and link prediction, to graph generation and transformation, graph matching and graph structure learning. Based on them, we further summarize the basic procedures which exploit full use of various GNNs for a large number of applications. Finally, we provide the organization of our book and summarize the roadmap of the various research topics of GNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨发布了新的文献求助10
刚刚
1秒前
我超爱cs发布了新的文献求助10
2秒前
星辰大海应助哈哈哈采纳,获得10
3秒前
打打应助xftx采纳,获得10
3秒前
yyy发布了新的文献求助10
3秒前
传奇3应助哈哈哈采纳,获得10
3秒前
吃饱饱完成签到,获得积分10
4秒前
852应助继续加油吧采纳,获得10
4秒前
4秒前
汉堡包应助ht采纳,获得10
5秒前
小宋应助高兴阑悦采纳,获得50
5秒前
bkagyin应助自觉柠檬采纳,获得10
5秒前
6秒前
9秒前
小蘑菇应助尉小雷采纳,获得10
9秒前
阳佟雨南发布了新的文献求助10
10秒前
11秒前
聪慧的草丛完成签到,获得积分10
11秒前
11秒前
小风车完成签到 ,获得积分10
12秒前
13秒前
14秒前
14秒前
sd发布了新的文献求助10
15秒前
0206发布了新的文献求助10
16秒前
巡音幻夜发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
清一壶发布了新的文献求助10
18秒前
Asen锅发布了新的文献求助10
18秒前
囚徒发布了新的文献求助10
19秒前
布布爱吃炸鸡完成签到,获得积分10
20秒前
自觉柠檬发布了新的文献求助10
21秒前
Tt完成签到 ,获得积分10
22秒前
我是老大应助小风车采纳,获得30
22秒前
22秒前
毅宁静610发布了新的文献求助10
22秒前
耍酷白筠发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010961
求助须知:如何正确求助?哪些是违规求助? 3550599
关于积分的说明 11306013
捐赠科研通 3284931
什么是DOI,文献DOI怎么找? 1810918
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811514