Graph Neural Networks

计算机科学 可解释性 人工智能 利用 深度学习 可扩展性 机器学习 图形 理论计算机科学 数据科学 计算机安全 数据库
作者
Lingfei Wu,Peng Cui,Jian Pei,Liang Zhao,Le Song
出处
期刊:Springer Singapore eBooks [Springer Nature]
卷期号:: 27-37 被引量:34
标识
DOI:10.1007/978-981-16-6054-2_3
摘要

Deep Learning has become one of the most dominant approaches in Artificial Intelligence research today. Although conventional deep learning techniques have achieved huge successes on Euclidean data such as images, or sequence data such as text, there are many applications that are naturally or best represented with a graph structure. This gap has driven a tide in research for deep learning on graphs, among them Graph Neural Networks (GNNs) are the most successful in coping with various learning tasks across a large number of application domains. In this chapter, we will systematically organize the existing research of GNNs along three axes: foundations, frontiers, and applications. We will introduce the fundamental aspects of GNNs ranging from the popular models and their expressive powers, to the scalability, interpretability and robustness of GNNs. Then, we will discuss various frontier research, ranging from graph classification and link prediction, to graph generation and transformation, graph matching and graph structure learning. Based on them, we further summarize the basic procedures which exploit full use of various GNNs for a large number of applications. Finally, we provide the organization of our book and summarize the roadmap of the various research topics of GNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白发布了新的文献求助10
刚刚
wanci应助陶军辉采纳,获得10
1秒前
2秒前
李健应助小雨采纳,获得10
2秒前
Prometheusss完成签到,获得积分10
3秒前
cym发布了新的文献求助10
3秒前
zhangyulong发布了新的文献求助10
3秒前
3秒前
4秒前
962950735完成签到,获得积分10
4秒前
pppeach发布了新的文献求助10
5秒前
无花果应助fjl采纳,获得10
6秒前
豪哥发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助美少女战士采纳,获得10
6秒前
英姑应助负责的太英采纳,获得10
7秒前
7秒前
8秒前
汪洋完成签到,获得积分10
8秒前
bingqian_yao发布了新的文献求助10
8秒前
皮卡丘发布了新的文献求助30
11秒前
11秒前
郑桂庆完成签到,获得积分10
11秒前
充电宝应助llly采纳,获得10
12秒前
dlahgag发布了新的文献求助10
12秒前
王泽发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
科目三应助Yu采纳,获得10
16秒前
17秒前
大鱼发布了新的文献求助30
17秒前
mslln发布了新的文献求助10
17秒前
17秒前
LMH发布了新的文献求助10
18秒前
科研小白完成签到,获得积分10
18秒前
英吉利25发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406441
求助须知:如何正确求助?哪些是违规求助? 4524437
关于积分的说明 14098224
捐赠科研通 4438201
什么是DOI,文献DOI怎么找? 2436040
邀请新用户注册赠送积分活动 1428184
关于科研通互助平台的介绍 1406292