水质
原水
人工智能
计算机科学
深度学习
过程(计算)
管道运输
人工神经网络
机器学习
质量(理念)
环境科学
环境工程
生态学
生物
操作系统
哲学
认识论
作者
D. Venkata Vara Prasad,Lokeswari Venkataramana,P. Senthil Kumar,G. Prasannamedha,S. Harshana,S. Srividya,K. Harrinei,Sravya Indraganti
标识
DOI:10.1016/j.scitotenv.2022.153311
摘要
Natural water sources like ponds, lakes and rivers are facing a great threat because of activities like discharge of untreated industrial effluents, sewage water, wastes, etc. It is mandatory to examine the water quality to ensure that only safe water is available for consumption. Traditional methods of water quality inspection are a cumbersome process and hence, Artificial Intelligence (AI) can be used as a catalyst for this process. AutoDL is an upcoming field to automate deep learning pipelines and enables model creation and interpretation with minimal code. However, it is still in the nascent stage. This work explores the suitability of adopting AutoDL for Water Quality Assessment by drawing a comparison between AutoDL and a conventional models and analysis to foresee the quality of the water, an appropriate class based on Water Quality Index segregating water bodies into different classes. The accuracy of conventional DL is 1.8% higher than that of AutoDL for binary class water data. The accuracy of conventional DL is 1% higher than that of AutoDL for multiclass water data. The accuracy of conventional model was ~98% to ~99% whereas AutoDL method yielded ~96% to ~98%. However, the AutoDL model ease the task of finding the appropriate DL model and proved better efficiency without manual intervention.
科研通智能强力驱动
Strongly Powered by AbleSci AI