SCSTCF: Spatial-Channel Selection and Temporal Regularized Correlation Filters for visual tracking

人工智能 判别式 模式识别(心理学) 计算机科学 视频跟踪 保险丝(电气) 增广拉格朗日法 跟踪(教育) 滤波器(信号处理) 相关性 BitTorrent跟踪器 计算机视觉 眼动 数学 对象(语法) 算法 工程类 电气工程 教育学 心理学 几何学
作者
Jianming Zhang,Wenjun Feng,Tingyu Yuan,Jin Wang,Arun Kumar Sangaiah
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:118: 108485-108485 被引量:152
标识
DOI:10.1016/j.asoc.2022.108485
摘要

Recently, combining multiple features into discriminative correlation filters to improve tracking representation has shown great potential in object tracking. Existing trackers apply fixed weights to fuse features or fuse response maps, which cannot adapt to the object drift well. Moreover, in the tracking algorithm, using cyclic shift to obtain training samples always cause boundary effect, resulting in dissatisfied tracking effect. Therefore, we first design a multiple features fusion method. Various handcrafted features are fused with the same weight, then the fused handcrafted features and deep features are fused by adaptive weights, which considerably improves the representation ability of the tracking object. Second, we propose a correlation filter object function model called Spatial-Channel Selection and Temporal Regularized Correlation Filters. We perform the grouping features selection from the dimensions of channel, spatial and temporal, so as to establish the relevance between the multi-channel features and the correlation filter. Finally, we transform the objective function of the model with equality constraint to augmented Lagrangian multiplier formula without constraint, which is divided into three subproblems with closed-form solutions. The optimal solution is obtained by iteratively solving three subproblems using Alternating Direction Multiplier Method (ADMM). We conduct extensive experiments in four public datasets, OTB-2013, OTB-2015, TC128, UAV123, and VOT2016. The experimental results represent our proposed tracker performs favorably against other prevailing trackers in success rate and precision. • We propose an adaptive weight fusion method to fuse handcrafted features and deep feature response maps. • We propose a novel CF model which combine spatial-channel selection of feature maps with temporal consistency constraint. • Our model is a general CF model and is derived by ADMM to obtain its optimal closed-form solution. • We achieve comparable performances with other state-of-the-art methods on 5 challenging datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助hhh采纳,获得10
1秒前
1秒前
冷傲山彤发布了新的文献求助10
2秒前
jessiefuli完成签到,获得积分20
4秒前
ZY发布了新的文献求助10
5秒前
5秒前
上官若男应助八零采纳,获得10
6秒前
xn201120发布了新的文献求助10
7秒前
wy发布了新的文献求助10
7秒前
苏苏发布了新的文献求助10
7秒前
8秒前
Cyber_relic完成签到,获得积分10
11秒前
11秒前
12秒前
Lyn完成签到,获得积分10
12秒前
儒雅致远发布了新的文献求助10
12秒前
赘婿应助liherong采纳,获得10
13秒前
所所应助sadascaqwqw采纳,获得10
14秒前
酷波er应助一郭红烧肉采纳,获得10
15秒前
幸福大白发布了新的文献求助30
15秒前
15秒前
AAA下水工王哥完成签到,获得积分10
16秒前
范范发布了新的文献求助10
16秒前
超级灵竹发布了新的文献求助10
16秒前
16秒前
认真初之发布了新的文献求助10
17秒前
17秒前
hhh完成签到,获得积分10
17秒前
18秒前
天天快乐应助认真跳跳糖采纳,获得10
19秒前
19秒前
20秒前
甜美的芷完成签到,获得积分10
20秒前
20秒前
快来拾糖发布了新的文献求助10
21秒前
爱睡觉的森森完成签到,获得积分10
21秒前
安详立果发布了新的文献求助10
21秒前
落落小兔关注了科研通微信公众号
21秒前
22秒前
bkagyin应助儒雅致远采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989510
求助须知:如何正确求助?哪些是违规求助? 3531756
关于积分的说明 11254536
捐赠科研通 3270255
什么是DOI,文献DOI怎么找? 1804947
邀请新用户注册赠送积分活动 882113
科研通“疑难数据库(出版商)”最低求助积分说明 809176