SCSTCF: Spatial-Channel Selection and Temporal Regularized Correlation Filters for visual tracking

人工智能 判别式 模式识别(心理学) 计算机科学 视频跟踪 保险丝(电气) 增广拉格朗日法 跟踪(教育) 滤波器(信号处理) 相关性 BitTorrent跟踪器 计算机视觉 眼动 数学 对象(语法) 算法 工程类 电气工程 教育学 心理学 几何学
作者
Jianming Zhang,Wenjun Feng,Tingyu Yuan,Jin Wang,Arun Kumar Sangaiah
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:118: 108485-108485 被引量:152
标识
DOI:10.1016/j.asoc.2022.108485
摘要

Recently, combining multiple features into discriminative correlation filters to improve tracking representation has shown great potential in object tracking. Existing trackers apply fixed weights to fuse features or fuse response maps, which cannot adapt to the object drift well. Moreover, in the tracking algorithm, using cyclic shift to obtain training samples always cause boundary effect, resulting in dissatisfied tracking effect. Therefore, we first design a multiple features fusion method. Various handcrafted features are fused with the same weight, then the fused handcrafted features and deep features are fused by adaptive weights, which considerably improves the representation ability of the tracking object. Second, we propose a correlation filter object function model called Spatial-Channel Selection and Temporal Regularized Correlation Filters. We perform the grouping features selection from the dimensions of channel, spatial and temporal, so as to establish the relevance between the multi-channel features and the correlation filter. Finally, we transform the objective function of the model with equality constraint to augmented Lagrangian multiplier formula without constraint, which is divided into three subproblems with closed-form solutions. The optimal solution is obtained by iteratively solving three subproblems using Alternating Direction Multiplier Method (ADMM). We conduct extensive experiments in four public datasets, OTB-2013, OTB-2015, TC128, UAV123, and VOT2016. The experimental results represent our proposed tracker performs favorably against other prevailing trackers in success rate and precision. • We propose an adaptive weight fusion method to fuse handcrafted features and deep feature response maps. • We propose a novel CF model which combine spatial-channel selection of feature maps with temporal consistency constraint. • Our model is a general CF model and is derived by ADMM to obtain its optimal closed-form solution. • We achieve comparable performances with other state-of-the-art methods on 5 challenging datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助潇湘雪月采纳,获得10
1秒前
赘婿应助fengliurencai采纳,获得10
2秒前
宋凤娇发布了新的文献求助10
2秒前
青山发布了新的文献求助100
2秒前
菜菜博士发布了新的文献求助10
2秒前
刘佳冉发布了新的文献求助10
3秒前
ASZXDW完成签到,获得积分10
3秒前
讨厌科研发布了新的文献求助10
3秒前
星空发布了新的文献求助30
4秒前
风趣的爆米花完成签到,获得积分10
4秒前
LTT完成签到,获得积分10
5秒前
5秒前
酷波er应助平淡夜柳采纳,获得10
5秒前
5秒前
阳光怀亦发布了新的文献求助50
7秒前
杜杜发布了新的文献求助10
10秒前
11秒前
123发布了新的文献求助10
12秒前
搜集达人应助活泼的行天采纳,获得10
13秒前
chen完成签到 ,获得积分10
13秒前
13秒前
linp发布了新的文献求助10
14秒前
LLL完成签到,获得积分10
15秒前
KDC完成签到,获得积分10
15秒前
阳光怀亦完成签到,获得积分10
16秒前
17秒前
呆瓜完成签到,获得积分10
17秒前
18秒前
18秒前
共享精神应助黑石采纳,获得10
19秒前
失眠的夏蓉完成签到,获得积分10
19秒前
19秒前
天天快乐应助潇湘雪月采纳,获得10
20秒前
胡图图发布了新的文献求助10
22秒前
平淡夜柳发布了新的文献求助10
22秒前
呆瓜发布了新的文献求助10
22秒前
研自助完成签到,获得积分10
23秒前
吊炸天完成签到,获得积分10
23秒前
123完成签到 ,获得积分10
25秒前
家家发布了新的文献求助30
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174