SCSTCF: Spatial-Channel Selection and Temporal Regularized Correlation Filters for visual tracking

人工智能 判别式 模式识别(心理学) 计算机科学 视频跟踪 保险丝(电气) 增广拉格朗日法 跟踪(教育) 滤波器(信号处理) 相关性 BitTorrent跟踪器 计算机视觉 眼动 数学 对象(语法) 算法 工程类 电气工程 教育学 心理学 几何学
作者
Jianming Zhang,Wenjun Feng,Tingyu Yuan,Jin Wang,Arun Kumar Sangaiah
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:118: 108485-108485 被引量:152
标识
DOI:10.1016/j.asoc.2022.108485
摘要

Recently, combining multiple features into discriminative correlation filters to improve tracking representation has shown great potential in object tracking. Existing trackers apply fixed weights to fuse features or fuse response maps, which cannot adapt to the object drift well. Moreover, in the tracking algorithm, using cyclic shift to obtain training samples always cause boundary effect, resulting in dissatisfied tracking effect. Therefore, we first design a multiple features fusion method. Various handcrafted features are fused with the same weight, then the fused handcrafted features and deep features are fused by adaptive weights, which considerably improves the representation ability of the tracking object. Second, we propose a correlation filter object function model called Spatial-Channel Selection and Temporal Regularized Correlation Filters. We perform the grouping features selection from the dimensions of channel, spatial and temporal, so as to establish the relevance between the multi-channel features and the correlation filter. Finally, we transform the objective function of the model with equality constraint to augmented Lagrangian multiplier formula without constraint, which is divided into three subproblems with closed-form solutions. The optimal solution is obtained by iteratively solving three subproblems using Alternating Direction Multiplier Method (ADMM). We conduct extensive experiments in four public datasets, OTB-2013, OTB-2015, TC128, UAV123, and VOT2016. The experimental results represent our proposed tracker performs favorably against other prevailing trackers in success rate and precision. • We propose an adaptive weight fusion method to fuse handcrafted features and deep feature response maps. • We propose a novel CF model which combine spatial-channel selection of feature maps with temporal consistency constraint. • Our model is a general CF model and is derived by ADMM to obtain its optimal closed-form solution. • We achieve comparable performances with other state-of-the-art methods on 5 challenging datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dream完成签到 ,获得积分10
1秒前
唐唐发布了新的文献求助10
1秒前
史克珍香完成签到 ,获得积分10
7秒前
晓风完成签到,获得积分10
10秒前
CR完成签到 ,获得积分10
11秒前
mammer应助超帅无色采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
13秒前
lilylwy完成签到 ,获得积分0
13秒前
li完成签到 ,获得积分10
13秒前
可爱的函函应助唐唐采纳,获得10
18秒前
小石头完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
24秒前
xiaoxiaoxingchen完成签到 ,获得积分10
24秒前
laohu完成签到,获得积分10
25秒前
风格完成签到,获得积分10
25秒前
大橙子发布了新的文献求助150
27秒前
八点必起完成签到,获得积分10
28秒前
sduweiyu完成签到 ,获得积分10
29秒前
hyf完成签到 ,获得积分10
30秒前
aldehyde应助芊芊要发SCI采纳,获得10
31秒前
Twinkle完成签到,获得积分10
33秒前
Eureka完成签到,获得积分10
35秒前
39秒前
浮熙完成签到 ,获得积分10
46秒前
笔芯完成签到,获得积分10
49秒前
看文献完成签到,获得积分0
51秒前
爱与感谢完成签到 ,获得积分10
53秒前
华仔应助大橙子采纳,获得10
54秒前
小帅完成签到,获得积分10
54秒前
man完成签到 ,获得积分10
55秒前
biofresh完成签到,获得积分10
57秒前
平凡完成签到,获得积分10
1分钟前
1分钟前
哈利波特完成签到,获得积分10
1分钟前
菓小柒完成签到 ,获得积分10
1分钟前
basil完成签到,获得积分10
1分钟前
大橙子发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022