亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SCSTCF: Spatial-Channel Selection and Temporal Regularized Correlation Filters for visual tracking

人工智能 判别式 模式识别(心理学) 计算机科学 视频跟踪 保险丝(电气) 增广拉格朗日法 跟踪(教育) 滤波器(信号处理) 相关性 BitTorrent跟踪器 计算机视觉 眼动 数学 对象(语法) 算法 工程类 电气工程 教育学 心理学 几何学
作者
Jianming Zhang,Wenjun Feng,Tingyu Yuan,Jin Wang,Arun Kumar Sangaiah
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:118: 108485-108485 被引量:152
标识
DOI:10.1016/j.asoc.2022.108485
摘要

Recently, combining multiple features into discriminative correlation filters to improve tracking representation has shown great potential in object tracking. Existing trackers apply fixed weights to fuse features or fuse response maps, which cannot adapt to the object drift well. Moreover, in the tracking algorithm, using cyclic shift to obtain training samples always cause boundary effect, resulting in dissatisfied tracking effect. Therefore, we first design a multiple features fusion method. Various handcrafted features are fused with the same weight, then the fused handcrafted features and deep features are fused by adaptive weights, which considerably improves the representation ability of the tracking object. Second, we propose a correlation filter object function model called Spatial-Channel Selection and Temporal Regularized Correlation Filters. We perform the grouping features selection from the dimensions of channel, spatial and temporal, so as to establish the relevance between the multi-channel features and the correlation filter. Finally, we transform the objective function of the model with equality constraint to augmented Lagrangian multiplier formula without constraint, which is divided into three subproblems with closed-form solutions. The optimal solution is obtained by iteratively solving three subproblems using Alternating Direction Multiplier Method (ADMM). We conduct extensive experiments in four public datasets, OTB-2013, OTB-2015, TC128, UAV123, and VOT2016. The experimental results represent our proposed tracker performs favorably against other prevailing trackers in success rate and precision. • We propose an adaptive weight fusion method to fuse handcrafted features and deep feature response maps. • We propose a novel CF model which combine spatial-channel selection of feature maps with temporal consistency constraint. • Our model is a general CF model and is derived by ADMM to obtain its optimal closed-form solution. • We achieve comparable performances with other state-of-the-art methods on 5 challenging datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
4秒前
tuanheqi发布了新的文献求助20
6秒前
Hello应助1111949431采纳,获得10
22秒前
mostspecial完成签到,获得积分10
23秒前
26秒前
26秒前
又村完成签到 ,获得积分10
31秒前
fengliurencai完成签到,获得积分10
32秒前
1分钟前
Azure666完成签到,获得积分10
1分钟前
JamesPei应助朴素夜梦采纳,获得10
1分钟前
1分钟前
1分钟前
Azure666发布了新的文献求助10
1分钟前
七喜完成签到 ,获得积分10
1分钟前
朴素夜梦发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Er1c发布了新的文献求助10
1分钟前
Er1c完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
型男完成签到,获得积分10
2分钟前
型男发布了新的文献求助30
2分钟前
李健的小迷弟应助oldblack采纳,获得10
2分钟前
Azure666关注了科研通微信公众号
2分钟前
3分钟前
3分钟前
石刘气泡shui完成签到 ,获得积分20
3分钟前
oldblack发布了新的文献求助10
3分钟前
3分钟前
科研通AI5应助肝肝好采纳,获得10
3分钟前
JoySue发布了新的文献求助10
3分钟前
阿菜完成签到,获得积分10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497453
求助须知:如何正确求助?哪些是违规求助? 3081956
关于积分的说明 9169888
捐赠科研通 2775181
什么是DOI,文献DOI怎么找? 1522814
邀请新用户注册赠送积分活动 706258
科研通“疑难数据库(出版商)”最低求助积分说明 703339