Interpreting neural networks for biological sequences by learning stochastic masks

计算机科学 突出 人工智能 人工神经网络 特征(语言学) 深度学习 序列(生物学) 机器学习 生物 遗传学 哲学 语言学
作者
Johannes Linder,Alyssa La Fleur,Zibo Chen,Ajasja Ljubetič,David Baker,Sreeram Kannan,Georg Seelig
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (1): 41-54 被引量:22
标识
DOI:10.1038/s42256-021-00428-6
摘要

Sequence-based neural networks can learn to make accurate predictions from large biological datasets, but model interpretation remains challenging. Many existing feature attribution methods are optimized for continuous rather than discrete input patterns and assess individual feature importance in isolation, making them ill-suited for interpreting non-linear interactions in molecular sequences. Building on work in computer vision and natural language processing, we developed an approach based on deep learning - Scrambler networks - wherein the most salient sequence positions are identified with learned input masks. Scramblers learn to predict Position-Specific Scoring Matrices (PSSMs) where unimportant nucleotides or residues are scrambled by raising their entropy. We apply Scramblers to interpret the effects of genetic variants, uncover non-linear interactions between cis-regulatory elements, explain binding specificity for protein-protein interactions, and identify structural determinants of de novo designed proteins. We show that Scramblers enable efficient attribution across large datasets and result in high-quality explanations, often outperforming state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shotgod完成签到,获得积分20
刚刚
科研通AI5应助蕾子采纳,获得10
刚刚
happy杨完成签到 ,获得积分10
刚刚
lichaoyes发布了新的文献求助10
刚刚
刚刚
Owen应助通~采纳,获得10
刚刚
封闭货车发布了新的文献求助10
1秒前
1秒前
www发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
shotgod发布了新的文献求助10
3秒前
ling玲完成签到,获得积分10
3秒前
奔奔发布了新的文献求助10
3秒前
SweepingMonk应助虚心盼晴采纳,获得10
4秒前
5秒前
汉堡包应助XXF采纳,获得10
5秒前
wzh完成签到,获得积分10
5秒前
海底落日完成签到,获得积分20
5秒前
6秒前
科研通AI5应助123采纳,获得30
6秒前
烟花应助pi采纳,获得10
7秒前
汉堡包应助小木木壮采纳,获得10
7秒前
7秒前
yl发布了新的文献求助30
7秒前
菲菲呀发布了新的文献求助10
7秒前
7秒前
科研通AI5应助禾泽采纳,获得30
8秒前
坚强的樱发布了新的文献求助10
8秒前
英俊梦槐完成签到,获得积分10
8秒前
123发布了新的文献求助10
9秒前
9秒前
9秒前
白泽发布了新的文献求助10
10秒前
一条贤与发布了新的文献求助20
10秒前
10秒前
英俊谷秋完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794