清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Interpreting neural networks for biological sequences by learning stochastic masks

计算机科学 突出 人工智能 人工神经网络 特征(语言学) 深度学习 序列(生物学) 机器学习 生物 遗传学 哲学 语言学
作者
Johannes Linder,Alyssa La Fleur,Zibo Chen,Ajasja Ljubetič,David Baker,Sreeram Kannan,Georg Seelig
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (1): 41-54 被引量:26
标识
DOI:10.1038/s42256-021-00428-6
摘要

Sequence-based neural networks can learn to make accurate predictions from large biological datasets, but model interpretation remains challenging. Many existing feature attribution methods are optimized for continuous rather than discrete input patterns and assess individual feature importance in isolation, making them ill-suited for interpreting non-linear interactions in molecular sequences. Building on work in computer vision and natural language processing, we developed an approach based on deep learning - Scrambler networks - wherein the most salient sequence positions are identified with learned input masks. Scramblers learn to predict Position-Specific Scoring Matrices (PSSMs) where unimportant nucleotides or residues are scrambled by raising their entropy. We apply Scramblers to interpret the effects of genetic variants, uncover non-linear interactions between cis-regulatory elements, explain binding specificity for protein-protein interactions, and identify structural determinants of de novo designed proteins. We show that Scramblers enable efficient attribution across large datasets and result in high-quality explanations, often outperforming state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Panther完成签到,获得积分10
6秒前
黙宇循光完成签到 ,获得积分10
8秒前
卡卡罗特先森完成签到 ,获得积分10
9秒前
邓代容完成签到 ,获得积分10
40秒前
41秒前
科研通AI6应助fishway采纳,获得10
42秒前
57秒前
1分钟前
万能图书馆应助fishway采纳,获得10
1分钟前
挣钱抱男模完成签到,获得积分10
1分钟前
1分钟前
南桥发布了新的文献求助10
1分钟前
Una完成签到,获得积分10
1分钟前
1分钟前
uppercrusteve完成签到,获得积分10
1分钟前
希望天下0贩的0应助饺子采纳,获得10
1分钟前
研友_VZG7GZ应助南桥采纳,获得10
1分钟前
2分钟前
饺子发布了新的文献求助10
2分钟前
Akim应助fishway采纳,获得10
2分钟前
小西完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
饺子完成签到,获得积分10
2分钟前
斯文的傲珊完成签到,获得积分10
2分钟前
一个小胖子完成签到,获得积分10
2分钟前
SciGPT应助bji采纳,获得10
2分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
浮游应助fishway采纳,获得10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
fishway发布了新的文献求助10
3分钟前
wood完成签到,获得积分10
3分钟前
Tong完成签到,获得积分0
3分钟前
3分钟前
bji发布了新的文献求助10
3分钟前
大个应助fishway采纳,获得10
3分钟前
一路有你完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418494
求助须知:如何正确求助?哪些是违规求助? 4534207
关于积分的说明 14143270
捐赠科研通 4450428
什么是DOI,文献DOI怎么找? 2441241
邀请新用户注册赠送积分活动 1432967
关于科研通互助平台的介绍 1410352