Optimizing quantum annealing schedules with Monte Carlo tree search enhanced with neural networks

量子退火 计算机科学 强化学习 模拟退火 人工神经网络 蒙特卡罗方法 量子计算机 量子 水准点(测量) 绝热量子计算 蒙特卡罗树搜索 数学优化 算法 人工智能 数学 物理 地理 统计 量子力学 大地测量学
作者
Yuqin Chen,Yu Chen,Chee‐Kong Lee,Shengyu Zhang,Chang‐Yu Hsieh
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (3): 269-278 被引量:24
标识
DOI:10.1038/s42256-022-00446-y
摘要

Quantum annealing is a practical approach to approximately implement the adiabatic quantum computational model in a real-world setting. The goal of an adiabatic algorithm is to prepare the ground state of a problem-encoded Hamiltonian at the end of an annealing path. This is typically achieved by driving the dynamical evolution of a quantum system slowly to enforce adiabaticity. Properly optimized annealing schedules often considerably accelerate the computational process. Inspired by the recent success of deep reinforcement learning such as DeepMind’s AlphaZero, we propose a Monte Carlo tree search (MCTS) algorithm and its enhanced version boosted by neural networks—which we name QuantumZero (QZero)—to automate the design of annealing schedules in a hybrid quantum–classical framework. Both the MCTS and QZero algorithms perform remarkably well in discovering effective annealing schedules even when the annealing time is short for the 3-SAT examples considered in this study. Furthermore, the flexibility of neural networks allows us to apply transfer-learning techniques to boost QZero’s performance. We demonstrate in benchmark studies that MCTS and QZero perform more efficiently than other reinforcement learning algorithms in designing annealing schedules. Quantum annealers are computational models implemented on quantum hardware that can efficiently solve combinatorial optimization problems. Annealing schedules with enhanced performance can be discovered with a Monte Carlo tree search algorithm and an enhanced version incorporating value and policy neural networks—as inspired by DeepMind’s AlphaZero.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rio发布了新的文献求助10
刚刚
刚刚
刚刚
卷卷发布了新的文献求助30
1秒前
所所应助summer采纳,获得10
2秒前
2秒前
杨师傅完成签到 ,获得积分10
3秒前
惊涛骇浪发布了新的文献求助10
3秒前
苹果蜗牛完成签到 ,获得积分10
5秒前
啊o完成签到 ,获得积分10
5秒前
我吃柠檬发布了新的文献求助10
5秒前
小蘑菇应助甘乐采纳,获得10
5秒前
yy完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
蔡龙杰完成签到,获得积分10
6秒前
6秒前
6秒前
123发布了新的文献求助10
6秒前
7秒前
YARA发布了新的文献求助10
7秒前
啾比文完成签到,获得积分10
7秒前
8秒前
green给green的求助进行了留言
9秒前
艾因兹怀斯完成签到,获得积分10
10秒前
黄院士发布了新的文献求助10
10秒前
11秒前
11秒前
田田完成签到 ,获得积分10
11秒前
June发布了新的文献求助30
11秒前
yjn完成签到,获得积分10
12秒前
Zhlili发布了新的文献求助20
12秒前
活泼忆丹完成签到,获得积分10
12秒前
13秒前
13秒前
玛卡发布了新的文献求助10
13秒前
14秒前
李伟完成签到,获得积分10
15秒前
jias发布了新的文献求助10
15秒前
李松林发布了新的文献求助10
16秒前
淡然的萝应助a3979107采纳,获得10
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584104
求助须知:如何正确求助?哪些是违规求助? 4667626
关于积分的说明 14768874
捐赠科研通 4610007
什么是DOI,文献DOI怎么找? 2529583
邀请新用户注册赠送积分活动 1498629
关于科研通互助平台的介绍 1467267