Optimizing quantum annealing schedules with Monte Carlo tree search enhanced with neural networks

量子退火 计算机科学 强化学习 模拟退火 人工神经网络 蒙特卡罗方法 量子计算机 量子 水准点(测量) 绝热量子计算 蒙特卡罗树搜索 数学优化 算法 人工智能 数学 物理 统计 大地测量学 量子力学 地理
作者
Yuqin Chen,Yu Chen,Chee‐Kong Lee,Shengyu Zhang,Chang‐Yu Hsieh
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (3): 269-278 被引量:24
标识
DOI:10.1038/s42256-022-00446-y
摘要

Quantum annealing is a practical approach to approximately implement the adiabatic quantum computational model in a real-world setting. The goal of an adiabatic algorithm is to prepare the ground state of a problem-encoded Hamiltonian at the end of an annealing path. This is typically achieved by driving the dynamical evolution of a quantum system slowly to enforce adiabaticity. Properly optimized annealing schedules often considerably accelerate the computational process. Inspired by the recent success of deep reinforcement learning such as DeepMind’s AlphaZero, we propose a Monte Carlo tree search (MCTS) algorithm and its enhanced version boosted by neural networks—which we name QuantumZero (QZero)—to automate the design of annealing schedules in a hybrid quantum–classical framework. Both the MCTS and QZero algorithms perform remarkably well in discovering effective annealing schedules even when the annealing time is short for the 3-SAT examples considered in this study. Furthermore, the flexibility of neural networks allows us to apply transfer-learning techniques to boost QZero’s performance. We demonstrate in benchmark studies that MCTS and QZero perform more efficiently than other reinforcement learning algorithms in designing annealing schedules. Quantum annealers are computational models implemented on quantum hardware that can efficiently solve combinatorial optimization problems. Annealing schedules with enhanced performance can be discovered with a Monte Carlo tree search algorithm and an enhanced version incorporating value and policy neural networks—as inspired by DeepMind’s AlphaZero.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuuuuu应助宝海青采纳,获得10
刚刚
acorn完成签到,获得积分10
2秒前
火星上的羽毛应助长度2到采纳,获得10
3秒前
潇洒应助mzf采纳,获得10
3秒前
N型半导体发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
djiwisksk66应助shinn采纳,获得10
6秒前
paojiao完成签到,获得积分10
7秒前
gslsx409完成签到,获得积分10
7秒前
兴奋渊思完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
甜甜谷波发布了新的文献求助10
9秒前
细腻飞鸟发布了新的文献求助10
9秒前
9秒前
xywang完成签到,获得积分10
10秒前
DrW1111发布了新的文献求助30
11秒前
Phy发布了新的文献求助10
12秒前
眼睛大雨筠应助小星星采纳,获得30
15秒前
yznfly应助小星星采纳,获得30
15秒前
15秒前
16秒前
17秒前
17秒前
18秒前
KONGBAI完成签到,获得积分10
20秒前
try发布了新的文献求助10
20秒前
111完成签到,获得积分20
21秒前
走四方应助goufufu采纳,获得20
21秒前
一棵草发布了新的文献求助10
21秒前
兴奋大马喽完成签到,获得积分10
23秒前
23秒前
23秒前
Lxt完成签到,获得积分10
25秒前
只剩下55发布了新的文献求助10
26秒前
早坂爱发布了新的文献求助10
27秒前
28秒前
28秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303