亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing quantum annealing schedules with Monte Carlo tree search enhanced with neural networks

量子退火 计算机科学 强化学习 模拟退火 人工神经网络 蒙特卡罗方法 量子计算机 量子 水准点(测量) 绝热量子计算 蒙特卡罗树搜索 数学优化 算法 人工智能 数学 物理 统计 大地测量学 量子力学 地理
作者
Yuqin Chen,Yu Chen,Chee‐Kong Lee,Shengyu Zhang,Chang‐Yu Hsieh
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (3): 269-278 被引量:24
标识
DOI:10.1038/s42256-022-00446-y
摘要

Quantum annealing is a practical approach to approximately implement the adiabatic quantum computational model in a real-world setting. The goal of an adiabatic algorithm is to prepare the ground state of a problem-encoded Hamiltonian at the end of an annealing path. This is typically achieved by driving the dynamical evolution of a quantum system slowly to enforce adiabaticity. Properly optimized annealing schedules often considerably accelerate the computational process. Inspired by the recent success of deep reinforcement learning such as DeepMind’s AlphaZero, we propose a Monte Carlo tree search (MCTS) algorithm and its enhanced version boosted by neural networks—which we name QuantumZero (QZero)—to automate the design of annealing schedules in a hybrid quantum–classical framework. Both the MCTS and QZero algorithms perform remarkably well in discovering effective annealing schedules even when the annealing time is short for the 3-SAT examples considered in this study. Furthermore, the flexibility of neural networks allows us to apply transfer-learning techniques to boost QZero’s performance. We demonstrate in benchmark studies that MCTS and QZero perform more efficiently than other reinforcement learning algorithms in designing annealing schedules. Quantum annealers are computational models implemented on quantum hardware that can efficiently solve combinatorial optimization problems. Annealing schedules with enhanced performance can be discovered with a Monte Carlo tree search algorithm and an enhanced version incorporating value and policy neural networks—as inspired by DeepMind’s AlphaZero.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助菠萝采纳,获得10
2秒前
余可馨发布了新的文献求助10
3秒前
6秒前
10秒前
科研通AI6应助余可馨采纳,获得10
12秒前
13秒前
菠萝发布了新的文献求助10
14秒前
UpLiu完成签到 ,获得积分10
27秒前
32秒前
41秒前
Jasper应助维颖采纳,获得10
44秒前
小花小宝和阿飞完成签到 ,获得积分10
49秒前
吴端完成签到,获得积分10
50秒前
贪玩老姆完成签到 ,获得积分10
55秒前
tj完成签到 ,获得积分10
1分钟前
1分钟前
阳佟水蓉完成签到,获得积分10
1分钟前
1分钟前
所所应助zhvjdb采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
维颖发布了新的文献求助10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
浮浮世世发布了新的文献求助10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
Cast_Lappland发布了新的文献求助10
1分钟前
1分钟前
Cast_Lappland完成签到,获得积分10
1分钟前
早川完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
可爱的函函应助早川采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430