Optimizing quantum annealing schedules with Monte Carlo tree search enhanced with neural networks

量子退火 计算机科学 强化学习 模拟退火 人工神经网络 蒙特卡罗方法 量子计算机 量子 水准点(测量) 绝热量子计算 蒙特卡罗树搜索 数学优化 算法 人工智能 数学 物理 统计 大地测量学 量子力学 地理
作者
Yuqin Chen,Yu Chen,Chee‐Kong Lee,Shengyu Zhang,Chang‐Yu Hsieh
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (3): 269-278 被引量:24
标识
DOI:10.1038/s42256-022-00446-y
摘要

Quantum annealing is a practical approach to approximately implement the adiabatic quantum computational model in a real-world setting. The goal of an adiabatic algorithm is to prepare the ground state of a problem-encoded Hamiltonian at the end of an annealing path. This is typically achieved by driving the dynamical evolution of a quantum system slowly to enforce adiabaticity. Properly optimized annealing schedules often considerably accelerate the computational process. Inspired by the recent success of deep reinforcement learning such as DeepMind’s AlphaZero, we propose a Monte Carlo tree search (MCTS) algorithm and its enhanced version boosted by neural networks—which we name QuantumZero (QZero)—to automate the design of annealing schedules in a hybrid quantum–classical framework. Both the MCTS and QZero algorithms perform remarkably well in discovering effective annealing schedules even when the annealing time is short for the 3-SAT examples considered in this study. Furthermore, the flexibility of neural networks allows us to apply transfer-learning techniques to boost QZero’s performance. We demonstrate in benchmark studies that MCTS and QZero perform more efficiently than other reinforcement learning algorithms in designing annealing schedules. Quantum annealers are computational models implemented on quantum hardware that can efficiently solve combinatorial optimization problems. Annealing schedules with enhanced performance can be discovered with a Monte Carlo tree search algorithm and an enhanced version incorporating value and policy neural networks—as inspired by DeepMind’s AlphaZero.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
千逐发布了新的文献求助10
1秒前
我是老大应助沉静的不正采纳,获得10
1秒前
2秒前
调皮傲柏完成签到,获得积分10
3秒前
3秒前
彭于晏应助California采纳,获得10
3秒前
感性的莆发布了新的文献求助10
3秒前
彭于晏应助兴奋柠檬采纳,获得30
4秒前
wanci应助无奈的凡双采纳,获得10
5秒前
5秒前
WM应助繁荣的紫青采纳,获得10
5秒前
lgs完成签到,获得积分10
6秒前
虚心岂愈发布了新的文献求助10
6秒前
6秒前
6秒前
pangpang应助飞星采纳,获得30
7秒前
烨小冯发布了新的文献求助10
7秒前
jjy完成签到,获得积分10
7秒前
香蕉觅云应助飞星采纳,获得10
7秒前
mads完成签到 ,获得积分10
7秒前
9秒前
10秒前
毛豆应助m30采纳,获得10
10秒前
YH完成签到,获得积分10
11秒前
dudu发布了新的文献求助10
11秒前
11秒前
明轩发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
kuangweiming完成签到,获得积分10
15秒前
coldzer0发布了新的文献求助10
15秒前
沐沐完成签到,获得积分10
15秒前
17秒前
California发布了新的文献求助10
18秒前
卷一卷完成签到,获得积分10
18秒前
小花生zz发布了新的文献求助10
19秒前
兴奋柠檬发布了新的文献求助30
19秒前
小唐完成签到 ,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312474
求助须知:如何正确求助?哪些是违规求助? 2945127
关于积分的说明 8523062
捐赠科研通 2620847
什么是DOI,文献DOI怎么找? 1433151
科研通“疑难数据库(出版商)”最低求助积分说明 664881
邀请新用户注册赠送积分活动 650255