Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction

数值天气预报 均方误差 过度拟合 预测技巧 机器学习 感知器 太阳辐照度 光伏系统 计算机科学 气象学 人工智能 统计 数学 工程类 人工神经网络 地理 电气工程
作者
Dávid Markovics,Martin János Mayer
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:161: 112364-112364 被引量:212
标识
DOI:10.1016/j.rser.2022.112364
摘要

The increase of the worldwide installed photovoltaic (PV) capacity and the intermittent nature of the solar resource highlights the importance of power forecasting for the grid integration of the technology. This study compares 24 machine learning models for deterministic day-ahead power forecasting based on numerical weather predictions (NWP), tested for two-year-long 15-min resolution datasets of 16 PV plants in Hungary. The effects of the predictor selection and the benefits of the hyperparameter tuning are also evaluated. The results show that the two most accurate models are kernel ridge regression and multilayer perceptron with an up to 44.6% forecast skill score over persistence. Supplementing the basic NWP data with Sun position angles and statistically processed irradiance values as the inputs of the learning models results in a 13.1% decrease of the root mean square error (RMSE), which underlines the importance of the predictor selection. The hyperparameter tuning is essential to exploit the full potential of the models, especially for the less robust models, which are prone to under or overfitting without proper tuning. The overall best forecasts have a 13.9% lower RMSE compared to the baseline scenario of using linear regression. Moreover, the power forecasts based on only daily average irradiance forecasts and the Sun position angles have only a 1.5% higher RMSE than the best scenario, which demonstrates the effectiveness of machine learning even for limited data availability. The results of this paper can support both researchers and practitioners in constructing the best data-driven techniques for NWP-based PV power forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
sheng发布了新的文献求助10
7秒前
嘴嘴发布了新的文献求助10
7秒前
vincy完成签到 ,获得积分10
10秒前
13秒前
手可摘星陈同学完成签到 ,获得积分10
14秒前
15秒前
芯止谭轩完成签到,获得积分10
19秒前
19秒前
20秒前
啊啊啊啊发布了新的文献求助10
24秒前
六金完成签到 ,获得积分10
26秒前
淡定从霜完成签到 ,获得积分10
28秒前
科研混子完成签到,获得积分10
30秒前
SYLH应助毅诚菌采纳,获得10
31秒前
lyx关注了科研通微信公众号
32秒前
华仔应助gugugu采纳,获得10
32秒前
111完成签到 ,获得积分10
35秒前
CTY236完成签到 ,获得积分10
36秒前
37秒前
深情安青应助喜悦熠彤采纳,获得10
38秒前
梁其杰完成签到,获得积分10
39秒前
40秒前
biopig发布了新的文献求助10
42秒前
今后应助钟叉烧采纳,获得10
44秒前
44秒前
叁壹粑粑完成签到,获得积分10
45秒前
小蘑菇应助嘴嘴采纳,获得10
46秒前
46秒前
48秒前
水木年华完成签到,获得积分10
48秒前
李俊梅完成签到 ,获得积分10
48秒前
星星发布了新的文献求助10
49秒前
FashionBoy应助调皮的思松采纳,获得10
50秒前
大个应助安静半双采纳,获得10
51秒前
52秒前
CTY236发布了新的文献求助10
52秒前
赵李锋完成签到,获得积分10
52秒前
义气萝卜头完成签到 ,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761775
求助须知:如何正确求助?哪些是违规求助? 3305579
关于积分的说明 10134752
捐赠科研通 3019607
什么是DOI,文献DOI怎么找? 1658239
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754751