亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction

数值天气预报 均方误差 过度拟合 预测技巧 机器学习 感知器 太阳辐照度 光伏系统 计算机科学 气象学 人工智能 统计 数学 工程类 人工神经网络 地理 电气工程
作者
Dávid Markovics,Martin János Mayer
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:161: 112364-112364 被引量:269
标识
DOI:10.1016/j.rser.2022.112364
摘要

The increase of the worldwide installed photovoltaic (PV) capacity and the intermittent nature of the solar resource highlights the importance of power forecasting for the grid integration of the technology. This study compares 24 machine learning models for deterministic day-ahead power forecasting based on numerical weather predictions (NWP), tested for two-year-long 15-min resolution datasets of 16 PV plants in Hungary. The effects of the predictor selection and the benefits of the hyperparameter tuning are also evaluated. The results show that the two most accurate models are kernel ridge regression and multilayer perceptron with an up to 44.6% forecast skill score over persistence. Supplementing the basic NWP data with Sun position angles and statistically processed irradiance values as the inputs of the learning models results in a 13.1% decrease of the root mean square error (RMSE), which underlines the importance of the predictor selection. The hyperparameter tuning is essential to exploit the full potential of the models, especially for the less robust models, which are prone to under or overfitting without proper tuning. The overall best forecasts have a 13.9% lower RMSE compared to the baseline scenario of using linear regression. Moreover, the power forecasts based on only daily average irradiance forecasts and the Sun position angles have only a 1.5% higher RMSE than the best scenario, which demonstrates the effectiveness of machine learning even for limited data availability. The results of this paper can support both researchers and practitioners in constructing the best data-driven techniques for NWP-based PV power forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
上官若男应助大晨采纳,获得10
25秒前
35秒前
NattyPoe发布了新的文献求助10
40秒前
42秒前
你好发布了新的文献求助10
45秒前
科目三应助你好采纳,获得10
50秒前
Danta发布了新的文献求助10
1分钟前
2分钟前
ziyue发布了新的文献求助10
2分钟前
2分钟前
大晨发布了新的文献求助10
2分钟前
2分钟前
river_121发布了新的文献求助10
2分钟前
Lan完成签到 ,获得积分10
2分钟前
大模型应助1123048683wm采纳,获得10
2分钟前
mxczsl完成签到,获得积分10
2分钟前
3分钟前
3分钟前
腰突患者的科研完成签到,获得积分10
3分钟前
思源应助大晨采纳,获得10
3分钟前
tianshanfeihe完成签到 ,获得积分10
4分钟前
xhsz1111完成签到 ,获得积分10
5分钟前
wakawaka完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
寂寞致幻发布了新的文献求助20
6分钟前
DONG发布了新的文献求助10
6分钟前
陶醉的烤鸡完成签到 ,获得积分10
7分钟前
7分钟前
知闲发布了新的文献求助10
7分钟前
SUNny完成签到 ,获得积分10
7分钟前
寂寞致幻完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
KYTQQ完成签到 ,获得积分10
9分钟前
小青年儿完成签到 ,获得积分10
9分钟前
星辰大海应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
Lucas应助科研通管家采纳,获得10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635044
求助须知:如何正确求助?哪些是违规求助? 4734672
关于积分的说明 14989679
捐赠科研通 4792784
什么是DOI,文献DOI怎么找? 2559896
邀请新用户注册赠送积分活动 1520161
关于科研通互助平台的介绍 1480221