数值天气预报
均方误差
过度拟合
预测技巧
机器学习
感知器
太阳辐照度
光伏系统
计算机科学
气象学
人工智能
统计
数学
工程类
人工神经网络
地理
电气工程
作者
Dávid Markovics,Martin János Mayer
标识
DOI:10.1016/j.rser.2022.112364
摘要
The increase of the worldwide installed photovoltaic (PV) capacity and the intermittent nature of the solar resource highlights the importance of power forecasting for the grid integration of the technology. This study compares 24 machine learning models for deterministic day-ahead power forecasting based on numerical weather predictions (NWP), tested for two-year-long 15-min resolution datasets of 16 PV plants in Hungary. The effects of the predictor selection and the benefits of the hyperparameter tuning are also evaluated. The results show that the two most accurate models are kernel ridge regression and multilayer perceptron with an up to 44.6% forecast skill score over persistence. Supplementing the basic NWP data with Sun position angles and statistically processed irradiance values as the inputs of the learning models results in a 13.1% decrease of the root mean square error (RMSE), which underlines the importance of the predictor selection. The hyperparameter tuning is essential to exploit the full potential of the models, especially for the less robust models, which are prone to under or overfitting without proper tuning. The overall best forecasts have a 13.9% lower RMSE compared to the baseline scenario of using linear regression. Moreover, the power forecasts based on only daily average irradiance forecasts and the Sun position angles have only a 1.5% higher RMSE than the best scenario, which demonstrates the effectiveness of machine learning even for limited data availability. The results of this paper can support both researchers and practitioners in constructing the best data-driven techniques for NWP-based PV power forecasting.
科研通智能强力驱动
Strongly Powered by AbleSci AI