亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction

数值天气预报 均方误差 过度拟合 预测技巧 机器学习 感知器 太阳辐照度 光伏系统 计算机科学 气象学 人工智能 统计 数学 工程类 人工神经网络 地理 电气工程
作者
Dávid Markovics,Martin János Mayer
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:161: 112364-112364 被引量:269
标识
DOI:10.1016/j.rser.2022.112364
摘要

The increase of the worldwide installed photovoltaic (PV) capacity and the intermittent nature of the solar resource highlights the importance of power forecasting for the grid integration of the technology. This study compares 24 machine learning models for deterministic day-ahead power forecasting based on numerical weather predictions (NWP), tested for two-year-long 15-min resolution datasets of 16 PV plants in Hungary. The effects of the predictor selection and the benefits of the hyperparameter tuning are also evaluated. The results show that the two most accurate models are kernel ridge regression and multilayer perceptron with an up to 44.6% forecast skill score over persistence. Supplementing the basic NWP data with Sun position angles and statistically processed irradiance values as the inputs of the learning models results in a 13.1% decrease of the root mean square error (RMSE), which underlines the importance of the predictor selection. The hyperparameter tuning is essential to exploit the full potential of the models, especially for the less robust models, which are prone to under or overfitting without proper tuning. The overall best forecasts have a 13.9% lower RMSE compared to the baseline scenario of using linear regression. Moreover, the power forecasts based on only daily average irradiance forecasts and the Sun position angles have only a 1.5% higher RMSE than the best scenario, which demonstrates the effectiveness of machine learning even for limited data availability. The results of this paper can support both researchers and practitioners in constructing the best data-driven techniques for NWP-based PV power forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Cecila完成签到,获得积分10
1秒前
1秒前
饼子发布了新的文献求助10
2秒前
一念莲花舟完成签到,获得积分10
11秒前
12秒前
12秒前
maher完成签到 ,获得积分10
15秒前
15秒前
16秒前
俏皮跳跳糖完成签到,获得积分10
17秒前
simon完成签到 ,获得积分10
23秒前
kHz完成签到,获得积分10
25秒前
27秒前
小马甲应助道松先生采纳,获得10
30秒前
35秒前
道松先生完成签到,获得积分10
35秒前
Evaporate发布了新的文献求助10
38秒前
38秒前
郁启蒙完成签到 ,获得积分10
41秒前
45秒前
null完成签到,获得积分0
52秒前
duoduoqian发布了新的文献求助10
55秒前
56秒前
古月完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
WANG发布了新的文献求助10
1分钟前
xiaoxiao发布了新的文献求助10
1分钟前
寒玉发布了新的文献求助30
1分钟前
Kkk完成签到 ,获得积分10
1分钟前
Auralis完成签到 ,获得积分10
1分钟前
xiaoxiao完成签到,获得积分10
1分钟前
典雅易槐发布了新的文献求助10
1分钟前
1分钟前
99668完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493741
求助须知:如何正确求助?哪些是违规求助? 4591745
关于积分的说明 14434583
捐赠科研通 4524146
什么是DOI,文献DOI怎么找? 2478673
邀请新用户注册赠送积分活动 1463681
关于科研通互助平台的介绍 1436464